scholarly journals Energy Input on Cover Crop Cultivation

2017 ◽  
Vol 21 (4) ◽  
pp. 65-72
Author(s):  
Leszek Majchrzak ◽  
Tomasz Piechota ◽  
Tomasz Piskier

AbstractThe research was carried out in 2015-2016 at the Research Station Brody belonging to Poznan University of Life Sciences. The experiment was assumed with blocks randomized in four replications. The aim of the study was to determine the size and structure of energy inputs incurred on cover crops cultivation in different soil tillage systems. The cumulative energy consumption methodology was used to analyse the energy expenditure on field pea and white mustard seed. Based on the research, it was found that sowing field pea as a cover crop as compared to white mustard increased the cumulative energy input by 63.2%. Applied sowing technologies, regardless of cover crop species, reduced cumulative energy use by 22.5% (strip tillage) and direct sowing by 40.7% as compared to traditional tillage. The structure of energy input depended on the type of used cover crop species, which was based on the energy value of the seed used. The value of the energy efficiency index for growing both cover crop species increased with the simplification of the tillage.

2019 ◽  
Vol 46 (No. 2) ◽  
pp. 57-64
Author(s):  
Marzena Błażewicz-Woźniak ◽  
Dariusz Wach ◽  
Elżbieta Patkowska ◽  
Mirosław Konopiński

The experimental design included seven cover crop species and six kinds of soil tillage in the field cultivation of carrot. The use of cover crops had a positive impact on the yield of marketable roots of carrot in comparison with the cultivation without the cover crops. A significant increase of marketable yield was noted after phacelia, buckwheat, mustard and sunflower. The flat ploughless tillage significantly reduced the marketable yield of roots in comparison with traditional ploughing. The largest marketable yield of roots was obtained from cultivation on ridges after mixing the biomass of buckwheat or phacelia or mustard with the soil, and the smallest, after reduced spring tillage using aggregate without cover crops. The largest marketable yield in flat ploughless tillage was obtained when using grubber before winter, and the biomass of phacelia was mixed with soil. Growing carrot on the ridges had a positive influence on increasing the share of the marketable yield of roots in comparison with other variants of cultivation including the conventional tillage. The all cover crops with the exception of spring vetch significantly increased the share of marketable roots in the yield compared with cultivation without cover crops. The largest percentage of the marketable yield was noted after use of phacelia. 


2015 ◽  
Vol 68 (1) ◽  
pp. 63-73
Author(s):  
Marzena Błażewicz-Woźniak ◽  
Dariusz Wach ◽  
Mirosław Konopiński ◽  
Elżbieta Patkowska ◽  
Monika Baltyn

<p>The aim of the experiment was to determine the influence of cover crop biomass incorporated into the soil at different times and using different treatments on carrot emergence and growth. 7 species of cover crops were included in the study: <em>Secale cereale</em>, <em>Avena sativa</em>, <em>Vicia sativa</em>, <em>Sinapis alba</em>, <em>Phacelia tanacetifolia</em>, <em>Fagopyrum esculentum</em>, and <em>Helianthus annuus</em>. </p><p>Number of emerged carrot plants significantly depended on the cover crop used and on the method of pre-winter and spring pre-sowing tillage. Carrot emerged best after a rye or oats cover crop. Regardless of the cover crop species used, the largest number of carrots emerged in cultivation on ridges. In other variants of no-plow tillage, number of seedlings was significantly lower and did not differ from that under traditional plow tillage. The highest leaf rosettes were formed by carrot growing after a rye or oats cover crop. The highest rosettes were produced by carrots in the treatments where tillage was limited to the use of a tillage implement in spring and the lowest ones after pre-winter plowing. The effect of tillage on the emergence and height of carrot leaves largely depended on weather conditions in the successive years of the study. The largest number of leaves was found in carrots grown after a buckwheat cover crop and in cultivation without cover crop, while the smallest one after phacelia and white mustard. Carrots produced the largest number of leaves after a sunflower cover crop and the use of a tillage implement in spring, while the number of leaves was lowest when the mustard biomass was incorporated into the soil in spring. The use of cover crops significantly increased the mass of leaves produced by carrot as compared to the cultivation without cover crop. The largest mass of leaves was produced by carrots grown after the phacelia and mustard cover crops. Conventional plow tillage and pre-winter tillage using a stubble cultivator promoted an increase in the mass of carrot leaves.</p>


Weed Science ◽  
2014 ◽  
Vol 62 (2) ◽  
pp. 294-302 ◽  
Author(s):  
Ulla M. E. Didon ◽  
Anna-Karin Kolseth ◽  
David Widmark ◽  
Paula Persson

There is an increasing interest in the use of cover crops in agriculture, in Sweden mainly for the use as catch crops to reduce nitrogen leakage. Some of these crops are known for their allelopathic abilities, which may play a role in the control of weeds and contribute to reduced herbicide use. This study aimed to explore the possible suppressive effect of the cover crop species white mustard, fodder radish, rye, and annual ryegrass on the early growth of the weed species silky windgrass, shepherd's-purse, and scentless false mayweed. In a greenhouse experiment using fresh cover crop residues, white mustard was the only crop that showed an effect. It reduced both seedling establishment, by 51 to 73%, and biomass, by 59 to 86%, of shepherd's-purse and scentless false mayweed. In contrast, in a growth chamber experiment using frozen material, mean germination time of silky windgrass was extended by 20 to 66% by all cover crops. Also, three out of four cover crops reduced root growth in scentless false mayweed by 40 to 46%, and two out of four cover crops reduced root growth in shepherd's-purse by 13 to 61%. However, considering seedling survival, white mustard was the most prominent cover crop, reducing survival by 21 to 57% in shepherd's-purse and scentless false mayweed. In this paper we provide evidence that different weed species show different response to different cover crops under climatic conditions prevailing in Scandinavia. Such results emphasize the importance of understanding weed–cover crop interactions as necessary for developing cropping systems that can utilize cover crops to suppress local weed flora.


2012 ◽  
Vol 64 (1) ◽  
pp. 91-98
Author(s):  
Dorota Gawęda

A field experiment was conducted in the period 2006- 2008 in the Uhrusk Experimental Farm belonging to the University of Life Sciences in Lublin. The experimental factor was the type of stubble crop ploughed in each year after harvest of spring barley: white mustard, lacy phacelia, winter rape, and a mixture of narrow-leaf lupin with field pea. In the experiment, successive spring barley crops were grown one after the other (in continuous monoculture). The aim of the experiment was to evaluate the effect of stubble crops used on the size and structure of barley yield. The three-year study showed an increasing trend in grain yield of spring barley grown after the mixture of legumes, lacy phacelia, and white mustard compared to its size in the treatment with no cover crop. Straw yield was significantly higher when barley was grown after the mixture of narrowleaf lupin with field pea than in the other treatments of the experiment. The type of ploughed-in stubble crop did not modify significantly plant height, ear length, and grain weight per ear. Growing the mixture of leguminous plants as a cover crop resulted in a significant increase in the density of ears per unit area in barley by an average of 14.7% relative to the treatment with winter rape. The experiment also showed the beneficial effect of the winter rape cover crop on 1000-grain weight of spring barley compared to that obtained in the treatments with white mustard and the mixture of legumes. All the cover crops caused an increase in the number of grains per ear of barley relative to that found in the control treatment. However, this increase was statistically proven only for the barley crops grown after lacy phacelia and the mixture of legumes.


Agronomy ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 80 ◽  
Author(s):  
Bryce J. Andersen ◽  
Dulan P. Samarappuli ◽  
Abbey Wick ◽  
Marisol T. Berti

Faba bean (Vicia faba Roth) and pea (Pisum sativum L.) are grown worldwide as protein sources for food and feed and can be used as cover crops after wheat (Triticum aestivum L.). However, faba bean is underutilized in upper Midwest farming systems. This study was conducted to determine how faba bean relates to pea as a forage, cover crop, and in cycling of nutrients to maize (Zea mays L.) in the following season. Five faba bean cultivars and two pea cultivars, a forage pea and a field pea, were established after wheat harvest in North Dakota, in 2017 and 2018. Faba bean and pea cultivars averaged 1.3 Mg ha−1 of biomass, enough to support 1.5 animal unit month (AUM) ha−1 for a 450 kg cow (Bos taurus L.) with calf, at 50% harvest efficiency. Crude protein content was highest in faba bean cv. Boxer (304 g kg−1), with faba bean cv. Laura and forage pea cv. Arvika having similar content, and field pea having the least (264 g kg−1). Cover crop treatments did not affect maize in the following year, indicating no nutrient cycling from faba bean and pea to maize. Both cover crop species tested provided high protein forage, suitable for late grazing, with a more fibrous crop residue. Faba bean has potential as a cover crop in the upper Midwest while providing greater quality forage than pea.


2004 ◽  
Vol 47 (3) ◽  
pp. 381-386 ◽  
Author(s):  
Júlio C. Franchini ◽  
Marcos A. Pavan ◽  
Mário Miyazawa

The objective of this study was to evaluate if cover crops can absorb P from the upper layers and transport it in their roots to subsoil layers. Samples of an Oxisol were placed in PVC columns. Super phosphate fertilizer was applied to the 0-10 cm soil surface layers. The cover crops tested were: Avena strigosa, Avena sativa, Secale cereale, Pisum sativum subsp arvense, Pisum sativum, Vicia villosa, Vicia sativa, Lupinus angustifoliu, Lupinus albus, and Triticum aestivum. After a growth period of 80 days the cover crop shoots were cut off and the soil was divided into 10cm layers and the roots of each layer were washed out. The roots and shoots were analyzed separated for total P contribution to the soil. Considerable amount of P was present in the roots of cover crops. Vicia sativa contained more than 60% of total plant P in the roots. The contribution of Vicia sativa to soil P bellow the fertilized zone was about 7 kg ha-1. It thus appeared that there existed a possibility of P redistribution into the soil under no tillage by using cover crops in rotation with cash crops. Vicia sativa was the most efficient cover crop species as P carrier into the roots from superficial layer to lower layers.


2014 ◽  
Vol 47 (2) ◽  
pp. 29-40 ◽  
Author(s):  
S. Hassannejad ◽  
A.R. Mobli

Abstract In order to evaluate the effects of some cover crops on extinction coefficient and weed cover percentage in sunflower, a field experiment was conducted based on a randomized complete block design with nine treatments and three replicates at the Agricultural Research Station, Tabriz University of Iran, during growing season 2012-2013. Treatments were triticale, hairy vetch, rapeseed, triticale + hairy vetch, triticale + rapeseed, hairy vetch + rapeseed, application of trifluralin herbicide, and controls (weed infested and weed free without planting cover crop). Result indicated than once established, living mulches can rapidly occupy the open space between the rows of the main crop and use the light that would otherwise be available to weeds. In the all cover crops treatments, the light extinction coefficient was increased and weed cover percentage was reduced. Highest reduction in total weed species was observed in hairy vetch + rapeseed and triticale + rapeseed cover crop 61.92% and 61.43 %, respectively, compared to weed infested, so this treatment was better than trifluralin application. It concluded that cover crops could be considered as integrated strategies for weed sustainable management.


2020 ◽  
Vol 6 (2) ◽  
pp. 64
Author(s):  
Imtiaz Ahmad ◽  
María del Mar Jiménez-Gasco ◽  
Dawn S. Luthe ◽  
Mary E. Barbercheck

Fungi in the genus Metarhizium (Hypocreales: Clavicipitaceae) are insect pathogens that can establish as endophytes and can benefit their host plant. In field experiments, we observed a positive correlation between the prevalence of M. robertsii and legume cover crops, and a negative relationship with brassicaceous cover crops and with increasing proportion of cereal rye in mixtures. Here, we report the effects of endophytic M. robertsii on three cover crop species under greenhouse conditions. We inoculated seeds of Austrian winter pea (Pisum sativum L., AWP), cereal rye (Secale cereale L.), and winter canola (Brassica napus L.) with conidia of M. robertsii to assess the effects of endophytic colonization on cover crop growth. We recovered M. robertsii from 59%, 46%, and 39% of seed-inoculated AWP, cereal rye, and canola plants, respectively. Endophytic M. robertsii significantly increased height and above-ground biomass of AWP and cereal rye but did not affect chlorophyll content of any of the cover crop species. Among inoculated plants from which we recovered M. robertsii, above-ground biomass of AWP was positively correlated with the proportion of colonized root but not leaf tissue sections. Our results suggest that winter cover crops may help to conserve Metarhizium spp. in annual cropping systems.


2019 ◽  
Vol 35 (5) ◽  
pp. 467-474 ◽  
Author(s):  
Ebony G. Murrell ◽  
Swayamjit Ray ◽  
Mary E. Lemmon ◽  
Dawn S. Luthe ◽  
Jason P. Kaye

AbstractArbuscular mycorrhizal fungi (AMF) can increase plant nutrient uptake and chemical defense production, both of which can improve plants’ ability to resist insect herbivory. Cover crops—non-commercial species planted in between cash crops in a crop rotation—can naturally alter both soil nutrients and AMF. We tested whether different cover crop species alter AMF colonization, plant nutrient status and plant–insect interactions in a subsequent maize crop. Cover crop species were either non-mycorrhizal, non-leguminous (canola, forage radish), mycorrhizal non-leguminous (cereal rye, oats), mycorrhizal leguminous (clover, pea) or absent (fallow). We measured the cascading consequences of cover crop treatment on maize root AMF colonization, maize growth and performance of an herbivorous insect (European corn borer) feeding on the maize. Maize AMF colonization was greater in plots previously planted with mycorrhizal (rye, oats) than non-mycorrhizal (canola, radish) cover crops or no cover crop (fallow). AMF colonization was linked to increased plant phosphorous and nitrogen, and maize growth increased with low plant N:P. Induced jasmonic acid pathway plant defenses increased with increasing maize growth and AMF colonization. European corn borer survivorship decreased with lower plant N:P, and insect development rate decreased with increased induced plant defenses. Our data describe a cascade in which cover crop species selection can increase or decrease mycorrhizal colonization of subsequent maize crop roots, which in turn impacts phosphorus uptake and may affect herbivory resistance in the maize. These results suggest that farmers could select cover crop species to manage nutrient uptake and pest resistance, in order to amend or limit fertilizer and pesticide use.


Agronomy ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1760
Author(s):  
Paul Cottney ◽  
Lisa Black ◽  
Ethel White ◽  
Paul N. Williams

The aim of this study is to identify species of cover crops that cause an increase in biomass and total nutrient accumulation in response to manure/slurry. This could improve nutrient efficiency and intensify the benefits from over-winter cover crops in arable rotations and improve following commercial crop yields. In a pot experiment, sixteen cover crops were grown for 100 days in response to slurry. Growth and nutrient (N, P, K, Mg and S) accumulation were measured, and then residue was reincorporated into the soil with spring barley (Hodeum vulgare L.) sown and harvested for yield. In response to slurry, tillage radish (Raphanus sativus L.) increased N accumulation by 101% due to a significant increase in biomass and % N (p < 0.05) over its relative control plots. Significant interactions between species and the application of slurry were found in cover crop biomass, cover crop and spring barley nutrient uptake, as well as cover crop carbon accumulation, particularly in the brassica species used. Slurry integrated with cover crops both reduced the cover crop C:N ratio and enhanced nutrient cycling compared to the control when soil mineral nitrogen (SMN) and spring barley crop N offtake were pooled. However, this was not observed in the legumes. This study shows that slurry integration with cover crops is a promising sustainable farming practice to sequester N and other macro-nutrients whilst providing a range of synergistic benefits to spring barley production when compared to unplanted/fallow land rotations. However, this advantage is subject to use of responsive cover crop species identified in this study.


Sign in / Sign up

Export Citation Format

Share Document