scholarly journals Effect of cover crops on emergence and growth of carrot (Daucus carota L.) in no-plow and traditional tillage

2015 ◽  
Vol 68 (1) ◽  
pp. 63-73
Author(s):  
Marzena Błażewicz-Woźniak ◽  
Dariusz Wach ◽  
Mirosław Konopiński ◽  
Elżbieta Patkowska ◽  
Monika Baltyn

<p>The aim of the experiment was to determine the influence of cover crop biomass incorporated into the soil at different times and using different treatments on carrot emergence and growth. 7 species of cover crops were included in the study: <em>Secale cereale</em>, <em>Avena sativa</em>, <em>Vicia sativa</em>, <em>Sinapis alba</em>, <em>Phacelia tanacetifolia</em>, <em>Fagopyrum esculentum</em>, and <em>Helianthus annuus</em>. </p><p>Number of emerged carrot plants significantly depended on the cover crop used and on the method of pre-winter and spring pre-sowing tillage. Carrot emerged best after a rye or oats cover crop. Regardless of the cover crop species used, the largest number of carrots emerged in cultivation on ridges. In other variants of no-plow tillage, number of seedlings was significantly lower and did not differ from that under traditional plow tillage. The highest leaf rosettes were formed by carrot growing after a rye or oats cover crop. The highest rosettes were produced by carrots in the treatments where tillage was limited to the use of a tillage implement in spring and the lowest ones after pre-winter plowing. The effect of tillage on the emergence and height of carrot leaves largely depended on weather conditions in the successive years of the study. The largest number of leaves was found in carrots grown after a buckwheat cover crop and in cultivation without cover crop, while the smallest one after phacelia and white mustard. Carrots produced the largest number of leaves after a sunflower cover crop and the use of a tillage implement in spring, while the number of leaves was lowest when the mustard biomass was incorporated into the soil in spring. The use of cover crops significantly increased the mass of leaves produced by carrot as compared to the cultivation without cover crop. The largest mass of leaves was produced by carrots grown after the phacelia and mustard cover crops. Conventional plow tillage and pre-winter tillage using a stubble cultivator promoted an increase in the mass of carrot leaves.</p>

2019 ◽  
Vol 46 (No. 2) ◽  
pp. 57-64
Author(s):  
Marzena Błażewicz-Woźniak ◽  
Dariusz Wach ◽  
Elżbieta Patkowska ◽  
Mirosław Konopiński

The experimental design included seven cover crop species and six kinds of soil tillage in the field cultivation of carrot. The use of cover crops had a positive impact on the yield of marketable roots of carrot in comparison with the cultivation without the cover crops. A significant increase of marketable yield was noted after phacelia, buckwheat, mustard and sunflower. The flat ploughless tillage significantly reduced the marketable yield of roots in comparison with traditional ploughing. The largest marketable yield of roots was obtained from cultivation on ridges after mixing the biomass of buckwheat or phacelia or mustard with the soil, and the smallest, after reduced spring tillage using aggregate without cover crops. The largest marketable yield in flat ploughless tillage was obtained when using grubber before winter, and the biomass of phacelia was mixed with soil. Growing carrot on the ridges had a positive influence on increasing the share of the marketable yield of roots in comparison with other variants of cultivation including the conventional tillage. The all cover crops with the exception of spring vetch significantly increased the share of marketable roots in the yield compared with cultivation without cover crops. The largest percentage of the marketable yield was noted after use of phacelia. 


Weed Science ◽  
2014 ◽  
Vol 62 (2) ◽  
pp. 294-302 ◽  
Author(s):  
Ulla M. E. Didon ◽  
Anna-Karin Kolseth ◽  
David Widmark ◽  
Paula Persson

There is an increasing interest in the use of cover crops in agriculture, in Sweden mainly for the use as catch crops to reduce nitrogen leakage. Some of these crops are known for their allelopathic abilities, which may play a role in the control of weeds and contribute to reduced herbicide use. This study aimed to explore the possible suppressive effect of the cover crop species white mustard, fodder radish, rye, and annual ryegrass on the early growth of the weed species silky windgrass, shepherd's-purse, and scentless false mayweed. In a greenhouse experiment using fresh cover crop residues, white mustard was the only crop that showed an effect. It reduced both seedling establishment, by 51 to 73%, and biomass, by 59 to 86%, of shepherd's-purse and scentless false mayweed. In contrast, in a growth chamber experiment using frozen material, mean germination time of silky windgrass was extended by 20 to 66% by all cover crops. Also, three out of four cover crops reduced root growth in scentless false mayweed by 40 to 46%, and two out of four cover crops reduced root growth in shepherd's-purse by 13 to 61%. However, considering seedling survival, white mustard was the most prominent cover crop, reducing survival by 21 to 57% in shepherd's-purse and scentless false mayweed. In this paper we provide evidence that different weed species show different response to different cover crops under climatic conditions prevailing in Scandinavia. Such results emphasize the importance of understanding weed–cover crop interactions as necessary for developing cropping systems that can utilize cover crops to suppress local weed flora.


2017 ◽  
Vol 21 (4) ◽  
pp. 65-72
Author(s):  
Leszek Majchrzak ◽  
Tomasz Piechota ◽  
Tomasz Piskier

AbstractThe research was carried out in 2015-2016 at the Research Station Brody belonging to Poznan University of Life Sciences. The experiment was assumed with blocks randomized in four replications. The aim of the study was to determine the size and structure of energy inputs incurred on cover crops cultivation in different soil tillage systems. The cumulative energy consumption methodology was used to analyse the energy expenditure on field pea and white mustard seed. Based on the research, it was found that sowing field pea as a cover crop as compared to white mustard increased the cumulative energy input by 63.2%. Applied sowing technologies, regardless of cover crop species, reduced cumulative energy use by 22.5% (strip tillage) and direct sowing by 40.7% as compared to traditional tillage. The structure of energy input depended on the type of used cover crop species, which was based on the energy value of the seed used. The value of the energy efficiency index for growing both cover crop species increased with the simplification of the tillage.


2019 ◽  
Vol 34 (1) ◽  
pp. 25-34
Author(s):  
Lucas S. Rector ◽  
Kara B. Pittman ◽  
Shawn C. Beam ◽  
Kevin W. Bamber ◽  
Charles W. Cahoon ◽  
...  

AbstractResidual herbicides applied to summer cash crops have the potential to injure subsequent winter annual cover crops, yet little information is available to guide growers’ choices. Field studies were conducted in 2016 and 2017 in Blacksburg and Suffolk, Virginia, to determine carryover of 30 herbicides commonly used in corn, soybean, or cotton on wheat, barley, cereal rye, oats, annual ryegrass, forage radish, Austrian winter pea, crimson clover, hairy vetch, and rapeseed cover crops. Herbicides were applied to bare ground either 14 wk before cover crop planting for a PRE timing or 10 wk for a POST timing. Visible injury was recorded 3 and 6 wk after planting (WAP), and cover crop biomass was collected 6 WAP. There were no differences observed in cover crop biomass among herbicide treatments, despite visible injury that suggested some residual herbicides have the potential to effect cover crop establishment. Visible injury on grass cover crop species did not exceed 20% from any herbicide. Fomesafen resulted in the greatest injury recorded on forage radish, with greater than 50% injury in 1 site-year. Trifloxysulfuron and atrazine resulted in greater than 20% visible injury on forage radish. Trifloxysulfuron resulted in the greatest injury (30%) observed on crimson clover in 1 site-year. Prosulfuron and isoxaflutole significantly injured rapeseed (17% to 21%). Results indicate that commonly used residual herbicides applied in the previous cash crop growing season result in little injury on grass cover crop species, and only a few residual herbicides could potentially affect the establishment of a forage radish, crimson clover, or rapeseed cover crop.


2016 ◽  
Vol 8 (9) ◽  
pp. 44
Author(s):  
Hide Omae ◽  
Fujio Nagumo

<p>We determined the effects of oat (<em>Avena sativa</em>) and hairy vetch (<em>Vicia villosa</em>) winter cover crops on subsequent maize growth, soil erosion, water run-off, and nitrate leaching. Separate or combined plots of oat and hairy vetch cover crops were grown in winter, and maize was subsequently planted in all plots in the following summer season. The half-recommended N fertilizer (50 kg ha<sup>-1</sup>) applied to zero-tillage maize produced the same biomass and yield as the control (i.e., natural fallow-maize with tillage and fertilizer application of 100 N kg ha<sup>-</sup><sup>1</sup>) when cultivated after hairy vetch (9.6 t ha<sup>-</sup><sup>1</sup>). In contrast, maize grown after oat showed 40.4% lower biomass and 65.4% lower yield. Compared to the control, runoff and soil erosion were 85.3-92.9% (<em>P</em> &lt; 0.001) and 68.6-98.7% lower with cover crop mulch irrespective of cover crop species (<em>P</em> &gt; 0.05), respectively. Cumulative nitrate leaching 60 cm below the soil surface was highest in the control, followed by (in descending order) hairy vetch-maize, hairy vetch + oat-maize, and oat-maize. NO<sub>3</sub>-N release showed a twin-peak pattern in hairy vetch-maize plots at 18 and 37 days after sowing (DAS). Meanwhile, a single peak was observed in the control at 32 DAS immediately after top dressing at 31 DAS. The synchrony of N supply and crop demand were better in hairy vetch-maize than oat-maize or conventional cultivation owing to rapid maize growth under lower rainfall conditions.<strong></strong></p>


Agriculture ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 441
Author(s):  
Hans J. Kandel ◽  
Dulan P. Samarappuli ◽  
Kory L. Johnson ◽  
Marisol T. Berti

Adoption of cover crop interseeding in the northwestern Corn Belt in the USA is limited due to inadequate fall moisture for establishment, short growing season, additional costs, and need for adapted winter-hardy species. This study evaluated three cover crop treatments—no cover crop, winter rye (Secale cereale L.), and winter camelina (Camelina sativa (L.) Crantz)—which were interseeded at the R6 soybean growth stage, using two different soybean (Glycine max (L.) Merr.) maturity groups (0.5 vs. 0.9) and two row spacings (30.5 vs. 61 cm). The objective was to evaluate these treatments on cover crop biomass, soil cover, plant density, and soybean yield. Spring wheat (Triticum aestivum L.) grain yield was also measured the following year. The early-maturing soybean cultivar (0.5 maturity) resulted in increased cover crop biomass and soil cover, with winter rye outperforming winter camelina. However, the early-maturing soybean yielded 2308 kg·ha−1, significantly less compared with the later maturing cultivar (2445 kg·ha−1). Narrow row spacing had higher soybean yield, but row spacing did not affect cover crop growth. Spring wheat should not follow winter rye if rye is terminated right before seeding the wheat. However, wheat planted after winter camelina was no different than when no cover crop was interseeded in soybean. Interseeding cover crops into established soybean is possible, however, cover crop biomass accumulation and soil cover are limited.


2004 ◽  
Vol 47 (3) ◽  
pp. 381-386 ◽  
Author(s):  
Júlio C. Franchini ◽  
Marcos A. Pavan ◽  
Mário Miyazawa

The objective of this study was to evaluate if cover crops can absorb P from the upper layers and transport it in their roots to subsoil layers. Samples of an Oxisol were placed in PVC columns. Super phosphate fertilizer was applied to the 0-10 cm soil surface layers. The cover crops tested were: Avena strigosa, Avena sativa, Secale cereale, Pisum sativum subsp arvense, Pisum sativum, Vicia villosa, Vicia sativa, Lupinus angustifoliu, Lupinus albus, and Triticum aestivum. After a growth period of 80 days the cover crop shoots were cut off and the soil was divided into 10cm layers and the roots of each layer were washed out. The roots and shoots were analyzed separated for total P contribution to the soil. Considerable amount of P was present in the roots of cover crops. Vicia sativa contained more than 60% of total plant P in the roots. The contribution of Vicia sativa to soil P bellow the fertilized zone was about 7 kg ha-1. It thus appeared that there existed a possibility of P redistribution into the soil under no tillage by using cover crops in rotation with cash crops. Vicia sativa was the most efficient cover crop species as P carrier into the roots from superficial layer to lower layers.


HortScience ◽  
2018 ◽  
Vol 53 (4) ◽  
pp. 432-440 ◽  
Author(s):  
Eric B. Brennan ◽  
Richard F. Smith

Strawberry (Fragaria ×ananassa Duch.) production in California uses plastic mulch–covered beds that provide many benefits such as moisture conservation and weed control. Unfortunately, the mulch can also cause environmental problems by increasing runoff and soil erosion and reducing groundwater recharge. Planting cover crops in bare furrows between the plastic cover beds can help minimize these problems. Furrow cover cropping was evaluated during two growing seasons in organic strawberries in Salinas, CA, using a mustard (Sinapis alba L.) cover crop planted at two seeding rates (1× and 3×). Mustard was planted in November or December after strawberry transplanting and it resulted in average densities per meter of furrow of 54 and 162 mustard plants for the 1× and 3× rates, respectively. The mustard was mowed in February before it shaded the strawberry plants. Increasing the seeding rate increased mustard shoot biomass and height, and reduced the concentration of P in the mustard shoots. Compared with furrows with no cover crop, cover-cropped furrows reduced weed biomass by 29% and 40% in the 1× and 3× seeding rates, respectively, although weeds still accounted for at least 28% of the furrow biomass in the cover-cropped furrows. These results show that growing mustard cover crops in furrows without irrigating the furrows worked well even during years with relatively minimal precipitation. We conclude that 1) mustard densities of ≈150 plants/m furrow will likely provide the most benefits due to greater biomass production, N scavenging, and weed suppression; 2) mowing was an effective way to kill the mustard; and 3) high seeding rates of mustard alone are insufficient to provide adequate weed suppression in strawberry furrows.


2018 ◽  
Vol 35 (3) ◽  
pp. 227-233 ◽  
Author(s):  
Natalie P Lounsbury ◽  
Nicholas D Warren ◽  
Seamus D Wolfe ◽  
Richard G Smith

AbstractHigh-residue cover crops can facilitate organic no-till vegetable production when cover crop biomass production is sufficient to suppress weeds (>8000 kg ha−1), and cash crop growth is not limited by soil temperature, nutrient availability, or cover crop regrowth. In cool climates, however, both cover crop biomass production and soil temperature can be limiting for organic no-till. In addition, successful termination of cover crops can be a challenge, particularly when cover crops are grown as mixtures. We tested whether reusable plastic tarps, an increasingly popular tool for small-scale vegetable farmers, could be used to augment organic no-till cover crop termination and weed suppression. We no-till transplanted cabbage into a winter rye (Secale cereale L.)-hairy vetch (Vicia villosa Roth) cover crop mulch that was terminated with either a roller-crimper alone or a roller-crimper plus black or clear tarps. Tarps were applied for durations of 2, 4 and 5 weeks. Across tarp durations, black tarps increased the mean cabbage head weight by 58% compared with the no tarp treatment. This was likely due to a combination of improved weed suppression and nutrient availability. Although soil nutrients and biological activity were not directly measured, remaining cover crop mulch in the black tarp treatments was reduced by more than 1100 kg ha−1 when tarps were removed compared with clear and no tarp treatments. We interpret this as an indirect measurement of biological activity perhaps accelerated by lower daily soil temperature fluctuations and more constant volumetric water content under black tarps. The edges of both tarp types were held down, rather than buried, but moisture losses from the clear tarps were greater and this may have affected the efficacy of clear tarps. Plastic tarps effectively killed the vetch cover crop, whereas it readily regrew in the crimped but uncovered plots. However, emergence of large and smooth crabgrass (Digitaria spp.) appeared to be enhanced in the clear tarp treatment. Although this experiment was limited to a single site-year in New Hampshire, it shows that use of black tarps can overcome some of the obstacles to implementing cover crop-based no-till vegetable productions in northern climates.


2020 ◽  
Vol 6 (2) ◽  
pp. 64
Author(s):  
Imtiaz Ahmad ◽  
María del Mar Jiménez-Gasco ◽  
Dawn S. Luthe ◽  
Mary E. Barbercheck

Fungi in the genus Metarhizium (Hypocreales: Clavicipitaceae) are insect pathogens that can establish as endophytes and can benefit their host plant. In field experiments, we observed a positive correlation between the prevalence of M. robertsii and legume cover crops, and a negative relationship with brassicaceous cover crops and with increasing proportion of cereal rye in mixtures. Here, we report the effects of endophytic M. robertsii on three cover crop species under greenhouse conditions. We inoculated seeds of Austrian winter pea (Pisum sativum L., AWP), cereal rye (Secale cereale L.), and winter canola (Brassica napus L.) with conidia of M. robertsii to assess the effects of endophytic colonization on cover crop growth. We recovered M. robertsii from 59%, 46%, and 39% of seed-inoculated AWP, cereal rye, and canola plants, respectively. Endophytic M. robertsii significantly increased height and above-ground biomass of AWP and cereal rye but did not affect chlorophyll content of any of the cover crop species. Among inoculated plants from which we recovered M. robertsii, above-ground biomass of AWP was positively correlated with the proportion of colonized root but not leaf tissue sections. Our results suggest that winter cover crops may help to conserve Metarhizium spp. in annual cropping systems.


Sign in / Sign up

Export Citation Format

Share Document