scholarly journals Urban Digital Twins – A FIWARE-based model

2021 ◽  
Vol 69 (12) ◽  
pp. 1106-1115
Author(s):  
Martin Bauer ◽  
Flavio Cirillo ◽  
Jonathan Fürst ◽  
Gürkan Solmaz ◽  
Ernö Kovacs

Abstract This article describes the use of digital twins for smart cities, i. e., the Urban Digital Twin (UDTw) concept. It shows how UDTws can be realized using the open source components from the FIWARE ecosystem that are already used in more than 200 cities worldwide. The used NGSI-LD standard is supported by the European Connecting Europe Facility, the Open and Agile Smart City community, the Indian Urban Data Exchange platform, and the Japanese Smart City Reference Model. Unlike digital twins in other domains, e. g., manufacturing, where digital twins are co-developed with their physical counterparts, UDTws often evolve driven by different stakeholders, on different time scales, as well as by utilizing many different data sources from the city. This article builds on a well-established lifecycle model for Digital Twins and combines this with a conceptual model for digital twins consisting of data, reactive, predictive and forecasting (“what if”) digital twin functionalities. The article also describes how AI-based technologies can be used to extract knowledge to build the UDTws from the IoT-based infrastructure of a smart city.

Author(s):  
S. Shaharuddin ◽  
K. N. Abdul Maulud ◽  
S. A. F. Syed Abdul Rahman ◽  
A. I. Che Ani

Abstract. Technology has advanced and progressed tremendously, and the term city is being elevated to a new level where the smart city has been introduced globally. Recent developments in the concept of smart city have led to a renewed interest in Digital Twin. Using precise Building Information Modelling (BIM) consolidated with big data and sensors, several attempts have been made to establish digital twin smart cities. In recent years, several researchers have sought to determine the capability of smart city and digital twin for various taxonomies such as development and urban planning purposes, built environment, manufacturing, environmental, disaster management, and healthcare. Despite being beneficial in many disciplines, especially in manufacturing, built environment, and urban planning, these existing studies have shown a lack of aspect in terms of emergency or disaster-related as opposed to the elements mentioned above. This is because the researcher has not treated emergencies or disasters in much detail. Therefore, an extensive review on smart city, digital twin, BIM and disaster management and technology that revolves around these terms were summarised. In general, 39 articles from prominent multidisciplinary databases were retrieved over the last two decades based on the suggested PRISMA workflow. These final articles were analysed and categorised into four themes based on the research content, gist, and keywords. Based on the review of 39 articles related to smart city, digital twin and BIM, a workflow for the smart city digital twin and the conceptual framework for indoor disaster management was proposed accordingly. The establishment of smart city digital twins solely for an indoor emergency can be beneficial to urbanites, and it could provide numerous benefits for enhanced situation assessment, decision making, coordination, and resource allocation.


2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Li Deren ◽  
Yu Wenbo ◽  
Shao Zhenfeng

AbstractDigital twins are considered to be a new starting point for today’s smart city construction. This paper defines the concepts of digital twins and digital twin cities, discusses the relationship between digital twins and smart cities, analyzes the characteristics of smart cities based on digital twins, and focuses on the five main applications of smart cities based on digital twins. Finally, we discuss the future development of smart cities based on digital twins.


Author(s):  
Mervi Hämäläinen

Growing urban areas are major consumers of natural resources, energy and raw materials. Understanding cities´ urban metabolism is salient when developing sustainable and resilient cities. This paper addresses concepts of smart city and digital twin technology as means to foster more sustainable urban development. Smart city has globally been well adopted concept in urban development. With smart city development cities aim to optimize overall performance of the city, its infrastructures, processes and services, but also to improve socio-economic wellbeing. Dynamic digital twins are constituted to form real-time connectivity between virtual and physical objects. Digital twin combines virtual objects to its physical counterparts. This conceptual paper provides additionally examples from dynamic digital twin platforms and digital twin of Helsinki, Finland.


2017 ◽  
Vol 14 (1) ◽  
pp. 118-128
Author(s):  
Jason Cohen ◽  
Judy Backhouse ◽  
Omar Ally

Young people are important to cities, bringing skills and energy and contributing to economic activity. New technologies have led to the idea of a smart city as a framework for city management. Smart cities are developed from the top-down through government programmes, but also from the bottom-up by residents as technologies facilitate participation in developing new forms of city services. Young people are uniquely positioned to contribute to bottom-up smart city projects. Few diagnostic tools exist to guide city authorities on how to prioritise city service provision. A starting point is to understand how the youth value city services. This study surveys young people in Braamfontein, Johannesburg, and conducts an importance-performance analysis to identify which city services are well regarded and where the city should focus efforts and resources. The results show that Smart city initiatives that would most increase the satisfaction of youths in Braamfontein  include wireless connectivity, tools to track public transport  and  information  on city events. These  results  identify  city services that are valued by young people, highlighting services that young people could participate in providing. The importance-performance analysis can assist the city to direct effort and scarce resources effectively.


Smart Cities ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 819-839
Author(s):  
Luís B. Elvas ◽  
Bruno Miguel Mataloto ◽  
Ana Lúcia Martins ◽  
João C. Ferreira

The smart city concept, in which data from different systems are available, contains a multitude of critical infrastructures. This data availability opens new research opportunities in the study of the interdependency between those critical infrastructures and cascading effects solutions and focuses on the smart city as a network of critical infrastructures. This paper proposes an integrated resilience system linking interconnected critical infrastructures in a smart city to improve disaster resilience. A data-driven approach is considered, using artificial intelligence and methods to minimize cascading effects and the destruction of failing critical infrastructures and their components (at a city level). The proposed approach allows rapid recovery of infrastructures’ service performance levels after disasters while keeping the coverage of the assessment of risks, prevention, detection, response, and mitigation of consequences. The proposed approach has the originality and the practical implication of providing a decision support system that handles the infrastructures that will support the city disaster management system—make the city prepare, adapt, absorb, respond, and recover from disasters by taking advantage of the interconnections between its various critical infrastructures to increase the overall resilience capacity. The city of Lisbon (Portugal) is used as a case to show the practical application of the approach.


2021 ◽  
Vol 13 (10) ◽  
pp. 1889
Author(s):  
Junxiang Zhu ◽  
Peng Wu

The development of a smart city and digital twin requires the integration of Building Information Modeling (BIM) and Geographic Information Systems (GIS), where BIM models are to be integrated into GIS for visualization and/or analysis. However, the intrinsic differences between BIM and GIS have led to enormous problems in BIM-to-GIS data conversion, and the use of City Geography Markup Language (CityGML) has further escalated this issue. This study aims to facilitate the use of BIM models in GIS by proposing using the shapefile format, and a creative approach for converting Industry Foundation Classes (IFC) to shapefile was developed by integrating a computer graphics technique. Thirteen building models were used to validate the proposed method. The result shows that: (1) the IFC-to-shapefile conversion is easier and more flexible to realize than the IFC-to-CityGML conversion, and (2) the computer graphics technique can improve the efficiency and reliability of BIM-to-GIS data conversion. This study can facilitate the use of BIM information in GIS and benefit studies working on digital twins and smart cities where building models are to be processed and integrated in GIS, or any other studies that need to manipulate IFC geometry in depth.


2021 ◽  
Vol 11 (22) ◽  
pp. 10712
Author(s):  
Wilson Nieto Bernal ◽  
Keryn Lorena García Espitaleta

The goal of this research is to design a framework to develop an information technology (IT) maturity model to guide the planning, design, and implementation of smart city services. The objectives of the proposed model are to define qualitatively and measure quantitatively the maturity levels for the IT dimensions used by smart cities (IT governance, IT services, data management and infrastructure), and to develop an implementation model that is practical and contextualized to the needs of any territory that wants to create or improve smart city services. The proposed framework consists of three components: a conceptual model of smart city services, IT dimensions and indicators, and IT maturity levels. The framework was validated by applying it to a case study for the evaluation of the IT maturity levels for the city of Cereté, Colombia.


2021 ◽  
pp. 237-252
Author(s):  
Elena Laudante

The paper focuses on the importance of robotics and artificial intelligence inside of the new urban contexts in which it is possible to consider and enhance the different dimensions of quality of life such as safety and health, environmental quality, social connection and civic participation. Smart technologies help cities to meet the new challenges of society, thus making them more livable, attractive and responsive in order to plan and to improve the city of the future. In accordance with the Agenda 2030 Program for sustainable development that intends the inclusive, safe, resilient and sustainable city, the direction of growth and prosperity of urban environments is pursued by optimizing the use of resources and respecting the environment. In the current society, robotic technology is proposed as a tool for innovation and evolution in urban as well as industrial and domestic contexts. On the one hand the users-citizens who participate dynamically in the activities and on the other the new technological systems integrated in the urban fabric. Existing urban systems that are “amplified” of artificial and digital intelligence and give life to smart cities, physical places that allow new forms of coexistence between humans and robots in order to implement the level of quality of life and define “human centered” innovative solutions and services thus responding to the particular needs of people in an effective and dynamic way. The current city goes beyond the definition of smart city. In fact, as said by Carlo Ratti, it becomes a "senseable city", a city capable of feeling but also sensitive and capable of responding to citizens who define the overall performance of the city. The multidisciplinary approach through the dialogue between designers, architects, engineers and urban planners will allow to face the new challenges through the dynamics of robot integration in the urban landscape. The cities of the future, in fact, will be pervaded by autonomous driving vehicles, robotized delivery systems and light transport solutions, in response to the new concept of smart mobility, on a human scale, shared and connected mobility in order to improve management and control of the digitized and smart city. Automation at constant rates as the keystone for urban futures and new models of innovative society. Through the identification of representative case studies in the field of innovative systems it will be possible to highlight the connections between design, smart city and "urban" robotics that will synergically highlight the main "desirable" qualities of life in the city as a place of experimentation and radical transformations. In particular, parallel to the new robotic solutions and human-robot interactions, the design discipline will be responsible for designing the total experience of the user who lives in synergy with the robots, thus changing the socio-economic dynamics of the city.


Author(s):  
Hung Viet NGO ◽  
◽  
Quan LE ◽  

The world’s population is forecasted of having 68% to be urban residents by 2050 while urbanization in the world continues to grow. Along with that phenomenon, there is a global trend towards the creation of smart cities in many countries. Looking at the overview of studies and reports on smart cities, it can be seen that the concept of “smart city” is not clearly defined. Information and communication technology have often been being recognized by the vast majority of agencies, authorities and people when thinking about smart city but the meaning of smart city goes beyond that. Smart city concept should come with the emphasizing on the role of social resources and smart urban governance in the management of urban issues. Therefore, the "smart city" label should refer to the capacity of smart people and smart officials who create smart urban governance solutions for urban problems. The autonomy in smart cities allows its members (whether individuals or the community in general) of the city to participate in governance and management of the city and become active users and that is the picture of e-democracy. E-democracy makes it easier for stakeholders to become more involved in government work and fosters effective governance by using the IT platform of smart city. This approach will be discussed more in this paper.


2017 ◽  
pp. 453-475
Author(s):  
Michael Batty ◽  
Andrew Hudson-Smith ◽  
Stephan Hugel ◽  
Flora Roumpani

This chapter introduces a range of analytics being used to understand the smart city, which depends on data that can primarily be understood using new kinds of scientific visualisation. We focus on short term routine functions that take place in cities which are being rapidly automated through various kinds of sensors, embedded into the physical fabric of the city itself or being accessed from mobile devices. We first outline a concept of the smart city, arguing that there is a major distinction between the ways in which technologies are being used to look at the short and long terms structure of cities, and we then focus on the shorter term, first examining the immediate visualisation of data through dashboards, then examining data infrastructures such as map portals, and finally introducing new ways of visualising social media which enable us to elicit the power of the crowd in providing and supplying data. We conclude with a brief focus on how new urban analytics is emerging to make sense of these developments.


Sign in / Sign up

Export Citation Format

Share Document