scholarly journals Memory immune response: a major challenge in vaccination

2012 ◽  
Vol 3 (5) ◽  
pp. 479-486 ◽  
Author(s):  
Antonella Prisco ◽  
Piergiuseppe De Berardinis

AbstractA crucial challenge for vaccine development is to design vaccines that induce a long-lasting protective immune response, i.e., immune memory. The persistence of antigen-specific antibody titers over a protective threshold, and the ability to exibit a ‘recall response’ to a subsequent encounter with an antigen have long been the only measurable correlates of vaccine take and immune memory development, suffering from the disadvantage of relying on long-term monitoring of the immune response. In the last few years, advances in the technologies for the identification and characterization of the cell subsets and molecular pathways involved in the immune response to vaccination have allowed innovative approaches to the identification of early correlates of immune memory. In this review, we discuss recent data and hypotheses on early correlates of the development of immune memory, with special emphasis on the gene expression signatures that underlie the self-renewal ability of some lymphocyte subsets, and their similarities with gene expression signatures in stem cells.

2021 ◽  
Vol 12 ◽  
Author(s):  
Céline Vaure ◽  
Véronique Grégoire-Barou ◽  
Virginie Courtois ◽  
Emilie Chautard ◽  
Cyril Dégletagne ◽  
...  

Evaluation of the short-term and long-term immunological responses in a preclinical model that simulates the targeted age population with a relevant vaccination schedule is essential for human vaccine development. A Göttingen minipig model was assessed, using pertussis vaccines, to demonstrate that vaccine antigen-specific humoral and cellular responses, including IgG titers, functional antibodies, Th polarization and memory B cells can be assessed in a longitudinal study. A vaccination schedule of priming with a whole cell (DTwP) or an acellular (DTaP) pertussis vaccine was applied in neonatal and infant minipigs followed by boosting with a Tdap acellular vaccine. Single cell RNAsequencing was used to explore the long-term maintenance of immune memory cells and their functionality for the first time in this animal model. DTaP but not DTwP vaccination induced pertussis toxin (PT) neutralizing antibodies. The cellular immune response was also characterized by a distinct Th polarization, with a Th-2-biased response for DTaP and a Th-1/Th-17-biased response for DTwP. No difference in the maintenance of pertussis-specific memory B cells was observed in DTaP- or DTwP-primed animals 6 months post Tdap boost. However, an increase in pertussis-specific T cells was still observed in DTaP primed minipigs, together with up-regulation of genes involved in antigen presentation and interferon pathways. Overall, the minipig model reproduced the humoral and cellular immune responses induced in humans by DTwP vs. DTaP priming, followed by Tdap boosting. Our data suggest that the Göttingen minipig is an attractive preclinical model to predict the long-term immunogenicity of human vaccines against Bordetella pertussis and potentially also vaccines against other pathogens.


Animals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2579
Author(s):  
Maria Edo ◽  
Pablo Jesús Marín-García ◽  
Lola Llobat

Leishmaniosis is an important zoonotic protozoan disease primarily spread to the Mediterranean region by Leishmania infantum, the predominant protozoan species, which accounts for the majority of cases. Development of disease depends on the immune response of the definitive host and, predictably, their genetic background. Recent studies have revealed breed-typical haplotypes that are susceptible to the spread of the protozoan parasite. The objective of this study was to analyze the prevalence of leishmaniosis on a Mediterranean island and determine the relationship between disease prevalence and breed. In addition, information on seropositive animals was recorded to characterize animals affected by the disease. To study the prevalence, a total of 3141 dogs were analyzed. Of these, the 149 infected animals were examined for age, sex, antibody titer, and disease stage. We observed a prevalence of 4.74%, which varied between breeds (p < 0.05). The Doberman Pinscher and Boxer breeds had the highest prevalence of leishmaniosis. Significant differences were observed between breeds with common ancestors, emphasizing the important genetic component. Finally, regarding the characterization of seropositive animals, the distribution is similar to other studies. We discovered a relationship (p < 0.05) between the number of antibody titers and the clinical disease stage, which was also present in Leishmania infantum, suggesting that the development of the disease depends on the humoral or Th2 immune response with ineffective antibodies.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 4686-4686 ◽  
Author(s):  
Andrey Loboda ◽  
Valeria Fantin ◽  
Sophia Randolph ◽  
Justin L. Ricker ◽  
James S. Hardwick ◽  
...  

Abstract Vorinostat is a histone deacetylase inhibitor currently under evaluation in numerous oncology clinical trials. In a Phase IIb trial, oral vorinostat resulted in a 29.7% overall objective response rate in patients (pts) with advanced cutaneous T-cell lymphoma (CTCL) and had an acceptable safety profile. These results prompted efforts to identify gene expression patterns that could elucidate the molecular mechanism of action (MOA), assess exposure to vorinostat and enrich for pts who are likely to respond. In the Phase IIb trial, gene expression profiles were obtained from 24 predose and 30 postdose (2 hr postdose on Day 15) PBMC samples. The gene expression associated with Sezary burden was easily identified in predose samples and consistent with published results. Although the power of this dataset was limited for development of a predose predictor of response, we identified three biologically-relevant pathways that correlated with response and deserve further validation. First, we found a coherent cluster of proliferation/cell cycle genes to be associated with resistance to therapy. This may imply that tumor aggressiveness is an important factor for clinical response. Second, a set of antioxidant genes was upregulated in non-responders. The generation of reactive oxygen species (ROS) is a component of the vorinostat MOA and increased ROS scavenging ability may confer resistance. Finally, cytotoxic cell markers were upregulated in responders and may represent another factor associated with contribution of T and NK cells to response. Each of these 3 patterns, if confirmed, would allow for 20–50% responder enrichment. We observed robust postdose gene expression changes in which ~942 genes exhibited significant regulation (fold-change&gt;2, P&lt;0.01 by paired t-test between predose and postdose samples) regardless of clinical outcome. Treated samples were discriminated from untreated with 87.5% accuracy based on leave one-out-cross-validation (LOOCV) using penalized analysis of microarrays (PAM). To understand the biology, we projected the preclinical postdose signatures derived from acute postdose changes in a panel of human lymphoid cell lines. Overall, 85% of genes significantly regulated by vorinostat in lymphoid cell lines were also regulated in the same direction in PBMC samples from CTCL pts. Thus, most of the observed postdose changes result from acute vorinostat effects on gene expression. The average preclinical postdose signature can be used to predict proximal vorinostat exposure with 90% accuracy. Among the gene expression signatures observed in clinical samples but not in cell lines, two deserve special attention. First, proliferation-associated genes are downregulated postdose and are differentially expressed between responders and non-responders. It may serve as an efficacy biomarker and would allow for 80% accurate discrimination of responders from non-responders in postdose samples based on LOOCV using PAM. Second, cytokines and genes associated with the humoral immune response were downregulated at the same time genes and cytokines associated with a cytotoxic immune response were upregulated. Such changes in the Th1-Th2 balance may reflect part of the MOA for vorinostat, and may be particularly relevant to CTCL, a disease caused by Th2 type skin-homing lymphocytes. Further evaluation of vorinostat in CTCL, including additional validation of gene expression signatures that may predict response, is warranted.


2021 ◽  
Author(s):  
M. Gordon Joyce ◽  
Kayvon Modjarrad

The need for SARS-CoV-2 next-generation vaccines has been highlighted by the rise of variants of concern (VoC) and the long-term threat of other coronaviruses. Here, we designed and characterized four categories of engineered nanoparticle immunogens that recapitulate the structural and antigenic properties of prefusion Spike (S), S1 and RBD. These immunogens induced robust S-binding, ACE2-inhibition, and authentic and pseudovirus neutralizing antibodies against SARS-CoV-2 in mice. A Spike-ferritin nanoparticle (SpFN) vaccine elicited neutralizing titers more than 20-fold higher than convalescent donor serum, following a single immunization, while RBD-Ferritin nanoparticle (RFN) immunogens elicited similar responses after two immunizations. Passive transfer of IgG purified from SpFN- or RFN-immunized mice protected K18-hACE2 transgenic mice from a lethal SARS-CoV-2 virus challenge. Furthermore, SpFN- and RFN-immunization elicited ACE2 blocking activity and neutralizing ID50 antibody titers >2,000 against SARS-CoV-1, along with high magnitude neutralizing titers against major VoC. These results provide design strategies for pan-coronavirus vaccine development.


2021 ◽  
Author(s):  
Etienne Brochot ◽  
Vianney Souplet ◽  
Pauline Follet ◽  
Pauline Ponthieu ◽  
Christophe Olivier ◽  
...  

Background: In the fight against SARS-COV-2, the development of serological assays based on different antigenic domains represent a versatile tool to get a comprehensive picture of the immune response or differentiate infection from vaccination beyond simple diagnosis. Objectives: Here we use a combination of the Nucleoprotein (NP), the Spike 1 (S1) and Spike 2 (S2) subunits, and the receptor binding domain (RBD) and N-terminal domain (NTD) of the Spike antigens from the Syrius-CoViDiag multiplex IgG assay, to follow the immune response to SARS-CoV-2 infection over a long time period and depending on disease severity. Results: Using a panel of 209 sera collected from 61 patients up to eight months after infection, we observed that most patients develop an immune response against multiple viral epitope, but anti-S2 antibodies seemed to last longer. For all the tested IgGs, we have found higher titers for hospitalized patients than for non-hospitalized ones. Moreover the combination of the five different IgG titers increased the correlation to the neutralizing antibody titers than if considered individually. Conclusion: Multiplex immunoassays have the potential to improve diagnostic performances, especially for ancient infection or mild form of the disease presenting weaker antibody titers. Also the combined detection of anti-NP and anti-Spike-derived domains can be useful to differentiate vaccination from viral infection and accurately assess the antibody potential to neutralize the virus.


Zygote ◽  
2021 ◽  
pp. 1-7
Author(s):  
Masoud Hemadi ◽  
Vahideh Assadollahi ◽  
Ghasem Saki ◽  
Afshin Pirnia ◽  
Masoud Alasvand ◽  
...  

Summary The quality and quantity of a spermatogonial stem-cell (SSC) culture can be measured in less time using a 3D culture in a scaffold. The present study investigated stemness gene expression and the morphological and structural characterization of SSCs encapsulated in alginate. SSCs were harvested from BALB/c neonatal mice testes through two-step mechanical and enzymatic digestion. The spermatogonial populations were separated using magnetic-activated cell sorting (MACS) using an anti-Thy1 antibody and c-Kit. The SSCs then were encapsulated in alginate hydrogel. After 2 months of SSC culturing, the alginate microbeads were extracted and stained to evaluate their histological properties. Real-time polymerase chain reaction (PCR) was performed to determine the stemness gene expression. Scanning electron microscopy (SEM) was performed to evaluate the SSC morphology, density and scaffold structure. The results showed that encapsulated SSCs had decreased expression of Oct4, Sox2 and Nanos2 genes, but the expression of Nanog, Bcl6b and Plzf genes was not significantly altered. Histological examination showed that SSCs with pale nuclei and numerous nucleolus formed colonies. SEM evaluation revealed that the alginate scaffold structure preserved the SSC morphology and density for more than 60 days. Cultivation of SSCs on alginate hydrogel can affect Oct4, Sox2 and Nanos2 expression.


2021 ◽  
Vol 100 (2) ◽  
pp. 17-21
Author(s):  
A.G. Rumyantsev ◽  

The study of the immune response to SARS-CoV-2 is crucial for the prognosis and control of coronavirus infection, diagnosis and formation of individual and population immunity, the development of indications and evaluation of the effectiveness of vaccinations, and, ultimately, the scientific prediction of the course of a pandemic. One year after the infection debuted in numerous immunological studies in COVID-19 patients, kinetics, duration and evolution of immune memory in humans due to infection are not well predictable, as data obtained represent the initial effector phase of the immune response, and the responses after recovery from infection cannot be used for long-term prediction. The paper presents an analysis of the results of studies of immune response and immune memory to SARS-CoV-2, including all three branches of adaptive immunity: immunoglobulins, memory B-cells, CD8+ and CD4+ T-cells in sick and cured patients in the dynamic period of 6–8 months after the onset of the disease.


Gene Therapy ◽  
2004 ◽  
Vol 11 (6) ◽  
pp. 544-551 ◽  
Author(s):  
VM Fazio ◽  
F Ria ◽  
E Franco ◽  
P Rosati ◽  
G Cannelli ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Lisa M. Runco ◽  
Charles B. Stauft ◽  
J. Robert Coleman

The majority of studies focused on the construction and reengineering of bacterial pathogens have mainly relied on the knocking out of virulence factors or deletion/mutation of amino acid residues to then observe the microbe’s phenotype and the resulting effect on the host immune response. These knockout bacterial strains have also been proposed as vaccines to combat bacterial disease. Theoretically, knockout strains would be unable to cause disease since their virulence factors have been removed, yet they could induce a protective memory response. While knockout strains have been valuable tools to discern the role of virulence factors in host immunity and bacterial pathogenesis, they have been unable to yield clinically relevant vaccines. The advent of synthetic biology and enhanced user-directed gene customization has altered this binary process of knockout, followed by observation. Recent studies have shown that a researcher can now tailor and customize a given microbe’s gene expression to produce a desired immune response. In this commentary, we highlight these studies as a new avenue for controlling the inflammatory response as well as vaccine development.


Sign in / Sign up

Export Citation Format

Share Document