scholarly journals Validation of a solvent-based process for the smoothing of additively manufactured 3D models of nasal cavities

2021 ◽  
Vol 7 (2) ◽  
pp. 423-426
Author(s):  
Viktor Meile ◽  
Maksym Tymkovych ◽  
Tobias Rusiecki ◽  
Yana Nosova ◽  
Florian Pape ◽  
...  

Abstract In order to improve the reliability of diagnosis of nasal breathing disorders, aerodynamic properties have to be analyzed through experiments based on 3D models. The surface properties of the prepared respective 3D models using fused deposition modeling (FDM) should match those of native nasal cavities, thus representing their normal state and typical pathologies. In this work, we validated the smoothing of dual extruded 3D printed samples of PLA (polylactide) and PVA (polyvinyl alcohol) using the solvent TFE (trifluoroethanol). The smoothing was conducted in vapour and liquid phases of TFE. Before and after treatment of the samples in liquid and vapour phases of TFE, mass and surface roughness analysis were performed. The results of this work will help to produce and process a representative model of the human paranasal sinuses, which can be created using CT data from a patient.

Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1021
Author(s):  
Bernhard Dorweiler ◽  
Pia Elisabeth Baqué ◽  
Rayan Chaban ◽  
Ahmed Ghazy ◽  
Oroa Salem

As comparative data on the precision of 3D-printed anatomical models are sparse, the aim of this study was to evaluate the accuracy of 3D-printed models of vascular anatomy generated by two commonly used printing technologies. Thirty-five 3D models of large (aortic, wall thickness of 2 mm, n = 30) and small (coronary, wall thickness of 1.25 mm, n = 5) vessels printed with fused deposition modeling (FDM) (rigid, n = 20) and PolyJet (flexible, n = 15) technology were subjected to high-resolution CT scans. From the resulting DICOM (Digital Imaging and Communications in Medicine) dataset, an STL file was generated and wall thickness as well as surface congruency were compared with the original STL file using dedicated 3D engineering software. The mean wall thickness for the large-scale aortic models was 2.11 µm (+5%), and 1.26 µm (+0.8%) for the coronary models, resulting in an overall mean wall thickness of +5% for all 35 3D models when compared to the original STL file. The mean surface deviation was found to be +120 µm for all models, with +100 µm for the aortic and +180 µm for the coronary 3D models, respectively. Both printing technologies were found to conform with the currently set standards of accuracy (<1 mm), demonstrating that accurate 3D models of large and small vessel anatomy can be generated by both FDM and PolyJet printing technology using rigid and flexible polymers.


2020 ◽  
Vol 29 ◽  
pp. 2633366X2096736
Author(s):  
Wangwang Yu ◽  
Lili Dong ◽  
Wen Lei ◽  
Jianan Shi

The research aim of this work was to understand the effects of the soil burial of rice straw on the morphology and properties of 3D-printed rice straw powder (RSP)/polylactic acid (PLA) biocomposites. The rice straw buried in the soil for various days was grounded and sieved into powder at 120 mesh. The RSP was then mixed with PLA at a mass ratio of 15/100 and the mixture was extruded into filament, followed by a fused deposition modeling 3D printing process. The as-prepared products were characterized in terms of morphological, mechanical, thermal, and nonisothermal crystallization properties. The results show that cavities with large holes induced by fused deposition modeling exhibit on the cross section of RSP/PLA biocomposite. The longer the burial duration of rice straw, the more the cavities with large holes could be observed on the surface. Therefore, soil burial of rice straw improved the thermal stability of the biocomposites while depressing their mechanical properties due to the amplification of the cavities. The crystallinity of the biocomposites was maintained at a low level (<9%) before and after the soil burial process.


Author(s):  
Jiaqi Lyu ◽  
Souran Manoochehri

The dimensional accuracy of fused deposition modeling (FDM) machines is dependent on errors caused by processing parameters and machine motions. In this study, an integrated error model combining these effects is developed. Extruder temperature, layer thickness, and infill density are selected as parameters of this study for three FDM machines, namely, Flashforge Finder, Ultimaker 2 go, and XYZ da Vinci 2.0 Duo. Experiments have been conducted using Taguchi method and the interactions between processing parameters are analyzed. Based on the dimensional deviations between fabricated parts and the computer aided design (CAD) geometry, a set of coefficients for the integrated error model are calculated to characterize each machine. Based on the results of the integrated error model, the original CAD geometry is optimized for fabrication accuracy on each machine. New parts are fabricated using the optimized CAD geometries. Through comparing the dimensional deviations of parts fabricated before and after optimization, the effectiveness of the integrated error model is analyzed and demonstrated for the three FDM machines.


2016 ◽  
Vol 22 (4) ◽  
pp. 636-644 ◽  
Author(s):  
Yaususi Kanada

Purpose A methodology for designing and printing three-dimensional (3D) objects with specified printing-direction using fused deposition modeling (FDM), which was proposed by a previous paper, enables the expression of natural directions, such as hair, fabric or other directed textures, in modeled objects. This paper aims to enhance this methodology for creating various shapes of generative visual objects with several specialized attributes. Design/methodology/approach The proposed enhancement consists of two new methods and a new technique. The first is a method for “deformation”. It enables deforming simple 3D models to create varieties of shapes much more easily in generative design processes. The second is the spiral/helical printing method. The print direction (filament direction) of each part of a printed object is made consistent by this method, and it also enables seamless printing results and enables low-angle overhang. The third, i.e. the light-reflection control technique, controls the properties of filament while printing with transparent polylactic acid. It enables the printed objects to reflect light brilliantly. Findings The proposed methods and technique were implemented in a Python library and evaluated by printing various shapes, and it is confirmed that they work well, and objects with attractive attributes, such as the brilliance, can be created. Research limitations/implications The methods and technique proposed in this paper are not well-suited to industrial prototyping or manufacturing that require strength or intensity. Practical implications The techniques proposed in this paper are suited for generatively producing various a small number of products with artistic or visual properties. Originality/value This paper proposes a completely different methodology for 3D printing than the conventional computer-aided design (CAD)-based methodology and enables products that cannot be created by conventional methods.


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1239
Author(s):  
Ali Chalgham ◽  
Andrea Ehrmann ◽  
Inge Wickenkamp

Fused deposition modeling (FDM) is one of the most often-used technologies in additive manufacturing. Several materials are used with this technology, such as poly(lactic acid) (PLA), which is most commonly applied. The mechanical properties of 3D-printed parts depend on the process parameters. This is why, in this study, three-point bending tests were carried out to characterize the influence of build orientation, layer thickness, printing temperature and printing speed on the mechanical properties of PLA samples. Not only the process parameters may affect the mechanical properties, but heat after-treatment also has an influence on them. For this reason, additional samples were printed with optimal process parameters and characterized after pure heat treatment as well as after deformation at a temperature above the glass transition temperature, cooling with applied deformation, and subsequent recovery under heat treatment. These findings are planned to be used in a future study on finger orthoses that could either be printed according to shape or in a flat shape and afterwards heated and bent around the finger.


2021 ◽  
Vol 5 (1) ◽  
pp. 48-55
Author(s):  
Adriana Kovalcik

AbstractIn the 21st century, additive manufacturing technologies have gained in popularity mainly due to benefits such as rapid prototyping, faster small production runs, flexibility and space for innovations, non-complexity of the process and broad affordability. In order to meet diverse requirements that 3D models have to meet, it is necessary to develop new 3D printing technologies as well as processed materials. This review is focused on 3D printing technologies applicable for polyhydroxyalkanoates (PHAs). PHAs are thermoplastics regarded as a green alternative to petrochemical polymers. The 3D printing technologies presented as available for PHAs are selective laser sintering and fused deposition modeling. Stereolithography can also be applied provided that the molecular weight and functional end groups of the PHA are adjusted for photopolymerization. The chemical and physical properties primarily influence the processing of PHAs by 3D printing technologies. The intensive research for the fabrication of 3D objects based on PHA has been applied to fulfil criteria of rapid and customized prototyping mainly in the medical area.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Zhaoling Sun ◽  
Jiaguang Meng ◽  
Yanning Yang ◽  
Lingjie Yu ◽  
Chao Zhi

PurposeThe purpose of the paper is to study the dyeing process of three-dimensional-printed (3DP) fabrics, and then study the wearability of the fabrics before and after dyeing to provide a feasible dyeing method of 3DP clothes.Design/methodology/approachIn this regard, the thermoplastic polyurethane (TPU) was applied during the process of 3DP. Then, the imitation twill weave (ITW) was printed with fused deposition modeling (FDM) technology using TPU and the suspension of Disperse Blue 2BLN (as a dye) was prepared. After that, the single factor analysis and orthogonal experiment of dyeing were combined to obtain the optimized dyeing process. And then, ITW fabrics were dyed through the weak acid-low temperature dyeing method. In the end, in order to discuss the wearability of ITW fabrics, the dyeing experiments, including permeability, wrinkle recovery angle, bending rigidity, crock fastness and washing colorfastness were carried out.FindingsThe surface morphology of TPU before and after spinning was established by field emission scanning electron microscopy (FE-SEM), which was confirmed the surface of TPU getting smoother after spinning. The wearability of the fabric after dyeing was not affected compared with before dyeing. Moreover, both colorfastness grades were above 4–5 with high colorfastness.Originality/valueThe article provides a method for 3DP dyeing, which can solve the problem of a single color. And the wearability demonstrates that 3DP fabrics after dyeing-based TPU have more value for clothing than before dyeing.


2019 ◽  
Vol 13 (3) ◽  
pp. 361-371 ◽  
Author(s):  
Hikaru Nishikawa ◽  
◽  
Yoshitaka Morimoto ◽  
Akio Hayashi

3D printers that use the fused deposition modeling (FDM) method are generally based on a three-linear-axis mechanism. However, because the posture of the workpiece is limited, the shape of the model that can be generated by this type of 3D printer is restricted. The 3D printer makes 3D models by stacking up materials on a plane. Because of this principle, a base to support the laminated material is necessary, and it is impossible to develop a model shape with an overhang without support parts. Although the problem is solved by making a foundation using a support material, it takes time to shape and remove the material. Therefore, this conventional method is time consuming. The purpose of this research is to laminate and make shapes that are difficult to laminate with a three-axis 3D printer without using support material. Therefore, a new five-axis 3D printer was developed with the FDM method, and its control program was designed. In addition, hardware consisting of the mechanical structure and the servo control system was developed, and the laminating path, which can exert the effect of the five-axis mechanism, was calculated. The posture of the workpiece can be controlled by mounting the B-axis, which tilts the lamination table, and the C-axis, which rotates the lamination table added on the three-axis configuration 3D printer. Furthermore, a five-axis synchronization control program was developed to control the motion of the five-axis synchronous motion. Furthermore, to correct the nozzle position due to the posture change of the workpiece, a mathematical model of shape creation theory was applied to derive the offset command value. As a result of the laminating experiments of the overhang shape model, the five-axis mechanism and laminating path were sufficiently effective, and the five-axis synchronous control of the 3D printer demonstrated the creation of the overhang shape. However, in experiments using a conventional three-axis mechanism 3D printer with the same lamination path, resins did not adhere and dripped, making shaping impossible. Because of these results, the machining time of the five-axis controlled 3D printers was shorter than that of conventional three-axis-controlled 3D printers. Here, the basic configurations and control system are reported.


2019 ◽  
Vol 254 ◽  
pp. 01013 ◽  
Author(s):  
Jozef Harušinec ◽  
Andrej Suchánek ◽  
Mária Loulová

The article deals with creating 3D models using RAPID PROTOTYPING technology. At present, we are witnessing the integration of new technologies into ordinary life. A good example is the use of FDM (fused deposition modeling) technology that primarily uses thermoplastics to create 3D models. A few years ago, the use of rapid prototyping technology was a prerogative of companies, research institutes and a narrow group of universities. Technologies such as FDM and STL (Stereolithography) have become affordable in the past few years for smaller businesses and individuals. The specific segment is the replicating rapid prototype RepRap (replicating rapid prototype), the extended version of which is the Prusa i3 printer.


Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 1905 ◽  
Author(s):  
Yichen Xu ◽  
Alexey Unkovskiy ◽  
Felix Klaue ◽  
Frank Rupp ◽  
Juergen Geis-Gerstorfer ◽  
...  

Computer-aided design (CAD) and additive manufacturing (AM) have shown promise in facilitating the fabrication of custom trays. Due to the clinical requirements, custom tray materials should achieve good bonding to the impression/adhesive systems. This study evaluated the retention of three fused deposition modeling (FDM) custom tray materials to a silicone impression/adhesive system before and after gritblasting (GB) by peel-off test. CAD-designed experimental test blocks were printed by FDM using acrylonitrile butadiene styrene (ABS), polyethylene terephthalate glycol copolyester (PETG), and high impact polystyrene (HIPS), and the reference test blocks were made of a conventional light-curing resin (n = 11). Before and after GB, the surface topography of all tray materials was analysed, and the maximum strength of the test block peeled off from a silicone impression/adhesive system was measured. After GB, the arithmetic mean height (Sa) and the valley fluid retention index (Svi) of the four material groups declined (p < 0.05). The peel-off strength of each of the four material groups significantly decreased by GB (p < 0.05), but no statistical difference could be found among them before or after GB. In all peel-off tests, adhesive failure occurred at the adhesive-impression material interface. The results indicated ABS, HIPS, and PETG could provide sufficient adhesion to the adhesive as the conventional light-curing resin, and GB could reduce the roughness generated by FDM and weaken the bonding between the adhesive and the silicone impression.


Sign in / Sign up

Export Citation Format

Share Document