scholarly journals Therapeutic potential of PACAP for neurodegenerative diseases

2015 ◽  
Vol 20 (2) ◽  
Author(s):  
Rongqiang Yang ◽  
Xin Jiang ◽  
Rui Ji ◽  
Lingbin Meng ◽  
Fuli Liu ◽  
...  

AbstractPituitary adenylate cyclase activating polypeptide (PACAP) is widely expressed in the central and peripheral nervous system. PACAP can initiate multiple signaling pathways through binding with three class B G-protein coupled receptors, PAC1, VPAC1 and VPAC2. Previous studies have revealed numerous biological activities of PACAP in the nervous system. PACAP acts as a neurotransmitter, neuromodulator and neurotrophic factor. Recently, its neuroprotective potential has been demonstrated in numerous in vitro and in vivo studies. Furthermore, evidence suggests that PACAP might move across the blood-brain barrier in amounts sufficient to affect the brain functions. Therefore, PACAP has been examined as a potential therapeutic method for neurodegenerative diseases. The present review summarizes the recent findings with special focus on the models of Alzheimer’s disease (AD) and Parkinson’s disease (PD). Based on these observations, the administered PACAP inhibits pathological processes in models of AD and PD, and alleviates clinical symptoms. It thus offers a novel therapeutic approach for the treatment of AD and PD.

2021 ◽  
Vol 42 ◽  
pp. e67649
Author(s):  
Marta Sánchez ◽  
Elena González-Burgos ◽  
Irene Iglesias ◽  
M. Pilar Gómez-Serranillos Cuadrado

Valeriana officinalis L. (Caprifoliaceae family) has been traditionally used to treat mild nervous tension and sleep problems. The basis of these activities are mainly attributed to valerenic acid through the modulation of the GABA receptor. Moreover, V. officinalis is claimed to have other biological activities such as cardiovascular benefits, anticancer, antimicrobial and spasmolytic.  The current review aims to update the biological and pharmacological studies (in vitro, in vivo and clinical trials) of V. officinalis and its major secondary metabolites in order to guide future research. Databases PubMed, Science Direct and Scopus were used for literature search including original papers written in English and published between 2014 and 2020. There have been identified 33 articles which met inclusion criteria. Most of these works were performed with V. officinalis extracts and only a few papers (in vitro and in vivo studies) evaluated the activity of isolated compounds (valerenic acid and volvalerenal acid K). In vitro studies focused on studying antioxidant and neuroprotective activity. In vivo studies and clinical trials mainly investigated activities on the nervous system (anticonvulsant activity, antidepressant, cognitive problems, anxiety and sleep disorders). Just few studies were focused on other different activities, highlight effects on symptoms of premenstrual and postmenopausal syndromes. Valeriana officinalis continues to be one of the medicinal plants most used by today's society for its therapeutic properties and whose biological and pharmacological activities continue to arouse great scientific interest as evidenced in recent publications. This review shows scientific evidence on traditional uses of V. officinalis on nervous system.


2019 ◽  
Vol 12 (1) ◽  
pp. 11 ◽  
Author(s):  
Bahare Salehi ◽  
Patrick Fokou ◽  
Mehdi Sharifi-Rad ◽  
Paolo Zucca ◽  
Raffaele Pezzani ◽  
...  

Naringenin is a flavonoid belonging to flavanones subclass. It is widely distributed in several Citrus fruits, bergamot, tomatoes and other fruits, being also found in its glycosides form (mainly naringin). Several biological activities have been ascribed to this phytochemical, among them antioxidant, antitumor, antiviral, antibacterial, anti-inflammatory, antiadipogenic and cardioprotective effects. Nonetheless, most of the data reported have been obtained from in vitro or in vivo studies. Although some clinical studies have also been performed, the main focus is on naringenin bioavailability and cardioprotective action. In addition, these studies were done in compromised patients (i.e., hypercholesterolemic and overweight), with a dosage ranging between 600 and 800 μM/day, whereas the effect on healthy volunteers is still debatable. In fact, naringenin ability to improve endothelial function has been well-established. Indeed, the currently available data are very promising, but further research on pharmacokinetic and pharmacodynamic aspects is encouraged to improve both available production and delivery methods and to achieve feasible naringenin-based clinical formulations.


2019 ◽  
Vol 19 (2) ◽  
pp. 75-99 ◽  
Author(s):  
Nayana Keyla Seabra de Oliveira ◽  
Marcos Rafael Silva Almeida ◽  
Franco Márcio Maciel Pontes ◽  
Mariana Pegrucci Barcelos ◽  
Carlos Henrique Tomich de Paula da Silva ◽  
...  

Introduction:Neurodegenerative diseases (NDDs) are progressive, directly affecting the central nervous system (CNS), the most common and recurrent are Alzheimer's disease (AD) and Parkinson's disease (PD). One factor frequently mentioned in the etiology of NDDs is the generation of free radicals and oxidative stress, producing cellular damages. Studies have shown that the consumption of foods rich in polyphenols, especially those of the flavonoid class, has been related to the low risk in the development of several diseases. Due to the antioxidant properties present in the food, a fruit that has been gaining prominence among these foods is the Euterpe oleracea Mart. (açaí), because it presents in its composition significant amounts of a subclass of the flavonoids, the anthocyanins.Methods:In the case review, the authors receive a basic background on the most common NDDs, oxidative stress and antioxidants. In addition, revisiting the various studies related to NDDs, including flavonoids and consumption of açaí.Results:Detailed analysis of the recently reported case studies reveal that dietary consumption of flavonoid-rich foods, such as açaí fruits, suggests the efficacy to attenuate neurodegeneration and prevent or reverse the age-dependent deterioration of cognitive function.Conclusion:This systematic review points out that flavonoids presenting in açaí have the potential for the treatment of diseases such as PD and AD and are candidates for drugs in future clinical research. However, there is a need for in vitro and in vivo studies with polyphenol that prove and ratify the therapeutic potential of this fruit for several NDDs.


Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4700
Author(s):  
Stefania Schiavone ◽  
Maria Grazia Morgese ◽  
Paolo Tucci ◽  
Luigia Trabace

Celastrol, the most abundant compound derived from the root of Tripterygium wilfordii, largely used in traditional Chinese medicine, has shown preclinical and clinical efficacy for a broad range of disorders, acting via numerous mechanisms, including the induction of the expression of several neuroprotective factors, the inhibition of cellular apoptosis, and the decrease of reactive oxygen species (ROS). Given the crucial implication of these pathways in the pathogenesis of Central Nervous System disorders, both in vitro and in vivo studies have focused their attention on the possible use of this compound in these diseases. However, although most of the available studies have reported significant neuroprotective effects of celastrol in cellular and animal models of these pathological conditions, some of these data could not be replicated. This review aims to discuss current in vitro and in vivo lines of evidence on the therapeutic potential of celastrol in neurodegenerative diseases, including Alzheimer’s and Parkinson’s diseases, amyotrophic lateral sclerosis, Huntington’s disease, multiple sclerosis, and cadmium-induced neurodegeneration, as well as in psychiatric disorders, such as psychosis and depression. In vitro and in vivo studies focused on celastrol effects in cerebral ischemia, ischemic stroke, traumatic brain injury, and epilepsy are also described.


2019 ◽  
Vol 25 (37) ◽  
pp. 4888-4902 ◽  
Author(s):  
Gilda D'Urso ◽  
Sonia Piacente ◽  
Cosimo Pizza ◽  
Paola Montoro

The consumption of berry-type fruits has become very popular in recent years because of their positive effects on human health. Berries are in fact widely known for their health-promoting benefits, including prevention of chronic disease, cardiovascular disease and cancer. Berries are a rich source of bioactive metabolites, such as vitamins, minerals, and phenolic compounds, mainly anthocyanins. Numerous in vitro and in vivo studies recognized the health effects of berries and their function as bioactive modulators of various cell functions associated with oxidative stress. Plants have one of the largest metabolome databases, with over 1200 papers on plant metabolomics published only in the last decade. Mass spectrometry (MS) and NMR (Nuclear Magnetic Resonance) are the most important analytical technologies on which the emerging ''omics'' approaches are based. They may provide detection and quantization of thousands of biologically active metabolites from a tissue, working in a ''global'' or ''targeted'' manner, down to ultra-trace levels. In the present review, we highlighted the use of MS and NMR-based strategies and Multivariate Data Analysis for the valorization of berries known for their biological activities, important as food and often used in the preparation of nutraceutical formulations.


2020 ◽  
Vol 26 ◽  
Author(s):  
Kondeti Ramudu Shanmugam ◽  
Bhasha Shanmugam ◽  
Gangigunta Venkatasubbaiah ◽  
Sahukari Ravi ◽  
Kesireddy Sathyavelu Reddy

Background : Diabetes is a major public health problem in the world. It affects each and every part of the human body and also leads to organ failure. Hence, great progress made in the field of herbal medicine and diabetic research. Objectives: Our review will focus on the effect of bioactive compounds of medicinal plants which are used to treat diabetes in India and other countries. Methods: Information regarding diabetes, oxidative stress, medicinal plants and bioactive compounds were collected from different search engines like Science direct, Springer, Wiley online library, Taylor and francis, Bentham Science, Pubmed and Google scholar. Data was analyzed and summarized in the review. Results and Conclusion: Anti-diabetic drugs that are in use have many side effects on vital organs like heart, liver, kidney and brain. There is an urgent need for alternative medicine to treat diabetes and their disorders. In India and other countries herbal medicine was used to treat diabetes. Many herbal plants have antidiabetic effects. The plants like ginger, phyllanthus, curcumin, aswagandha, aloe, hibiscus and curcuma showed significant anti-hyperglycemic activities in experimental models and humans. The bioactive compounds like Allicin, azadirachtin, cajanin, curcumin, querceitin, gingerol possesses anti-diabetic, antioxidant and other pharmacological properties. This review focuses on the role of bioactive compounds of medicinal plants in prevention and management of diabetes. Conclusion: Moreover, our review suggests that bioactive compounds have the potential therapeutic potential against diabetes. However, further in vitro and in vivo studies are needed to validate these findings.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 498
Author(s):  
Mariaevelina Alfieri ◽  
Antonietta Leone ◽  
Alfredo Ambrosone

Plants produce different types of nano and micro-sized vesicles. Observed for the first time in the 60s, plant nano and microvesicles (PDVs) and their biological role have been inexplicably under investigated for a long time. Proteomic and metabolomic approaches revealed that PDVs carry numerous proteins with antifungal and antimicrobial activity, as well as bioactive metabolites with high pharmaceutical interest. PDVs have also been shown to be also involved in the intercellular transfer of small non-coding RNAs such as microRNAs, suggesting fascinating mechanisms of long-distance gene regulation and horizontal transfer of regulatory RNAs and inter-kingdom communications. High loading capacity, intrinsic biological activities, biocompatibility, and easy permeabilization in cell compartments make plant-derived vesicles excellent natural or bioengineered nanotools for biomedical applications. Growing evidence indicates that PDVs may exert anti-inflammatory, anti-oxidant, and anticancer activities in different in vitro and in vivo models. In addition, clinical trials are currently in progress to test the effectiveness of plant EVs in reducing insulin resistance and in preventing side effects of chemotherapy treatments. In this review, we concisely introduce PDVs, discuss shortly their most important biological and physiological roles in plants and provide clues on the use and the bioengineering of plant nano and microvesicles to develop innovative therapeutic tools in nanomedicine, able to encompass the current drawbacks in the delivery systems in nutraceutical and pharmaceutical technology. Finally, we predict that the advent of intense research efforts on PDVs may disclose new frontiers in plant biotechnology applied to nanomedicine.


Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 952
Author(s):  
Małgorzata Chrząszcz ◽  
Barbara Krzemińska ◽  
Rafał Celiński ◽  
Katarzyna Szewczyk

The genus Cephalaria, belonging to the Caprifoliaceae family, is a rich source of interesting secondary metabolites, including mainly saponins which display a variety of biological activities, such as immunomodulatory, antimicrobial and hemolytic effects. Besides these compounds, flavonoids and phenolic acids were identified in Cephalaria species. Cephalaria is employed in traditional medicine e.g., to cure cardiac and lung diseases, rheumatism, and regulate menstruation. In this review we focus on the phenolic compound composition and antioxidative activity of Cephalaria species. The antioxidant effect can be explained by flavonoids present in all parts of these plants. However, future efforts should concentrate more on in vitro and in vivo studies and also on clinical trials in order to confirm the possibility of using these plants as natural antioxidants for the pharmacology, food or cosmetic industries.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3207
Author(s):  
Kumaresan Sakthiabirami ◽  
Vaiyapuri Soundharrajan ◽  
Jin-Ho Kang ◽  
Yunzhi Peter Yang ◽  
Sang-Won Park

The design of zirconia-based scaffolds using conventional techniques for bone-regeneration applications has been studied extensively. Similar to dental applications, the use of three-dimensional (3D) zirconia-based ceramics for bone tissue engineering (BTE) has recently attracted considerable attention because of their high mechanical strength and biocompatibility. However, techniques to fabricate zirconia-based scaffolds for bone regeneration are in a stage of infancy. Hence, the biological activities of zirconia-based ceramics for bone-regeneration applications have not been fully investigated, in contrast to the well-established calcium phosphate-based ceramics for bone-regeneration applications. This paper outlines recent research developments and challenges concerning numerous three-dimensional (3D) zirconia-based scaffolds and reviews the associated fundamental fabrication techniques, key 3D fabrication developments and practical encounters to identify the optimal 3D fabrication technique for obtaining 3D zirconia-based scaffolds suitable for real-world applications. This review mainly summarized the articles that focused on in vitro and in vivo studies along with the fundamental mechanical characterizations on the 3D zirconia-based scaffolds.


Sign in / Sign up

Export Citation Format

Share Document