scholarly journals Kinetics and Thermodynamics of Dispersed Oil Sorption by Kapok Fiber

2019 ◽  
Vol 26 (4) ◽  
pp. 759-772
Author(s):  
Check Shyong Quek ◽  
Norzita Ngadi ◽  
Muhammad Abbas Ahmad Zaini

Abstract This work was aimed at evaluating the sorption of dispersed oil by kapok fiber. The physicochemical characteristics of kapok fiber were investigated using BET, SEM, FTIR, XRD, contact angle and elemental analysis. The oil droplet size distribution at different temperatures was analysed using a Coulter counter, and its relationship with sorption was investigated. The effects of dosage, hydraulic retention time and temperature, on the sorption performance were studied. The result indicates that the sorption of dispersed oil by kapok fiber is spontaneous, endothermic and agreed with the pseudo-first-order reaction kinetics. The amount of oil that could be removed is about 28.5 %, while that of water is less than 1 % of the original amount (0.5 dm3). Kapok is a promising natural hydrophobic fiber for dispersed oil removal from oily wastewater.

2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Jialu Liu ◽  
Xijun Gong ◽  
Shijun Song ◽  
Fengjun Zhang ◽  
Cong Lu

Heat-activated persulfate oxidative treatment of chlorinated organic solvents containing chlorinated ethenes and ethanes in soil was investigated with different persulfate dosages (20 g/L, 40 g/L, and 60 g/L) and different temperatures (30°C, 40°C, and 50°C). Chlorinated organic solvents removal was increased as persulfate concentration increase. The persulfate dosage of 20 g/L with the highest OE (oxidant efficiency) value was economically suitable for chlorinated organic solvents removal. The increasing temperature contributed to the increasing depletion of chlorinated organic solvents. Chlorinated ethenes were more easily removed than chlorinated ethanes. Moreover, the persulfate depletion followed the pseudo-first-order reaction kinetics (kps=0.0292 [PS]0+0.0008,R2=0.9771). Heat-activated persulfate appeared to be an effective oxidant for treatment of chlorinated hydrocarbons.


2019 ◽  
Vol 9 (1) ◽  
pp. 159-164
Author(s):  
Narayan V. Lawale ◽  
Bhagwan Singh Dobhal ◽  
Sandip Singh Gaur ◽  
Rajendra Pardeshi

Permanganatic oxidation of Neomycine sulphate salt has been studied at different temperatures using spectrophotometer under alkaline conditions. The effect of variation of substrate Neomycine sulphate salt (NS), oxidant (KMnO4) and NaOH was studied under pseudo first order reaction conditions. The effect of different salts and solvents on oxidation of NS was also studied. The reaction was found to be first order with respect to oxidant, substrate and NaOH.. Keywords: Neomycine sulphate salt (NS), KMnO4 , permanganatic  oxidation, alkaline permanganate


2019 ◽  
Vol 17 (1) ◽  
pp. 1017-1025
Author(s):  
Mohamed Réda Arhoutane ◽  
Muna Shueai Yahya ◽  
Miloud El Karbane ◽  
Kacem El Kacemi

AbstractIn the context of environmental protection, where there is a need to develop effective operations for carrying out appropriate treatment of polluted water by pharmaceuticals. Therefore, the present study aims at evaluating the degradation for gentamicin through electro-Fenton (EF) operation, through taking into consideration the effect of several parameters of experimental in the process, namely, the concentration of initial gentamicin, the applied current and the Fe+2 (II) quantities. The (EF) operation employed involves a carbon-felt as cathode and platinum as anode at pH 3. Studies for the gentamicin kinetics is monitored by HPLC giving a pseudo-first order reaction following by a chemical oxygen demand, with a reached degree of mineralization 96% after of four hours of treatment through current 100 mA/cm2 with 0.1 mM of Fe+2. We find that the degradation for molecule of gentamicin is accompanied by an augmentation of the biodegradability, assesse through the Biochemical Oxygen Demand (BOD5) on chemical oxygen demand (COD) ratio, that augmentation from 0 to 0.41 before treatment after 30 min for EF treatment, showing that there is potential for conjugation of the EF process and the biological process. Furthermore, the by-products have been identified on the basis of HPLC-MS/MS results.


1985 ◽  
Vol 40 (11) ◽  
pp. 1128-1132
Author(s):  
Y. Riad ◽  
Adel N. Asaad ◽  
G.-A. S. Gohar ◽  
A. A. Abdallah

Sodium hydroxide reacts with α -(4-nitrobenzylthio)-acetic acid in aqueous-dioxane media to give 4,4'-diformylazoxybenzene as the main product besides 4,4'-dicarboxyazoxybenzene and a nitrone acid. This reaction was kinetically studied in presence of excess of alkali in different dioxane-water media at different temperatures. It started by a fast reversible a-proton abstraction step followed by two consecutive irreversible first-order steps forming two intermediates (α -hydroxy, 4-nitrosobenzylthio)-acetic acid and 4-nitrosobenzaldehyde. The latter underwent a Cannizzaro's reaction, the products of which changed in the reaction medium into 4,4'-diformylazoxybenzene and 4,4'-dicarboxyazoxybenzene. The rate constants and the thermodynamic parameters of the two consecutive steps were calculated and discussed. A mechanism was put forward for the formation of the nitrone acid.Other six 4-nitrobenzyl, aryl sulphides were qualitatively studied and they gave mainly 4,4'-diformylazoxybenzene beside 4,4'-dicarboxyazoxybenzene or its corresponding azo acid.


2007 ◽  
Vol 55 (10) ◽  
pp. 145-153 ◽  
Author(s):  
T. Ölmez ◽  
I. Kabdaşlı ◽  
O. Tünay

In this study, the effects of the phosphonic acid based sequestering agent EDTMPA used in the textile dye baths on colour and organic matter removal by ozone oxidation was experimentally investigated. Procion Navy HEXL dyestuff that has been commonly used for the reactive dyeing of cellulose fibers was selected as the model component. The organic matter oxidation by ozone was determined to obey the pseudo-first order kinetics as they are treated singly or in combination. COD removal rates obtained from pseudo-first order reaction kinetics showed that oxidation of Navy HEXL alone (0.0947 L/min) was faster than that of EDTMPA (0.0171 L/min) and EDTMPA with dye (0.0155 L/min) at pH 3.0. It was also found that reaction rates of single EDTMPA removal and EDTMPA and dye mixture removal increased as the reaction pH was increased from 3.0 to 10.5.


1980 ◽  
Vol 20 (06) ◽  
pp. 579-590 ◽  
Author(s):  
Nicholas D. Sylvester ◽  
John J. Byeseda

Abstract The separation of oil, stabilized with an oil-soluble petroleum sulfonate, from brine solutions by induced-air flotation was studied in a continuous-flow pilot unit. The effects of inlet oil concentration, vessel residence time, air flow rate, bubble diameter, oil drop diameter, temperature, NaCl concentration, and cationic polyelectrolyte concentration were investigated. Oil drop and air bubble diameters, liquid residence time, and concentration of cationic polyelectrolyte were the most significant variables affecting overall flotation performance. Only drops larger than 2 m showed significant removal, while smaller drops were generated by the air-inducing rotor. The cationic polyelectrolyte improved flotation performance by increasing the number of large oil drops.The removal rate for each oil drop size was first order with respect to oil drop concentration, and an experimental procedure permitting determination of the first-order rate constants for removal only due to bubble/drop interactions was developed. The oil drop and air bubble diameters were the only variables which affected these rate constants. Increasing oil drop diameter and decreasing bubble diameter increased the rate constants. Comparison of the experimental and theoretically predicted rate constants showed that the mechanism of oil-droplet removal by bubbles from 0.2- to 0.7-mm is one of hydrodynamic capture in the wake behind the rising bubbles. Introduction Oily wastewaters are generated during the production, processing, transportation, storage, and use of petroleum and its products. Removal of dispersed oil from water is usually accomplished by either dissolved- or dispersed-gas flotation. The processes are similar: gas bubbles are introduced into the oil-containing liquid and the oil drops are captured by the gas bubbles which quickly rise to the surface where the oil is removed. The significant differences between the two flotation processes are the bubble size and mixing conditions. In dissolved-gas flotation, the bubbles are about 50 to 60 m in diameter, whereas induced-gas bubbles are an order of magnitude larger. Dissolved-gas flotation units operate under fairly quiescent conditions and the liquid phase approximates plug flow. For induced-gas flotation, the submerged rotor imparts enough energy to the liquid that the tank contents are mixed nearly perfectly.This research focuses on the induced-air flotation process for the removal of dispersed oil droplets. The industrial use of induced-air flotation devices for oil wastewater separation began in 1969. Basset provides the process development history, equipment description, and operating experience for an induced-air unit similar to the design used in the experiments described here. Although induced-air flotation equipment is simple, the fluid mechanics of the process are not; and the arrangement of the turbine, sleeve, and perforations have been determined necessarily by trail-and-error experimentation with small-scale units.The interaction between gas bubbles and oil drops has been described as follows (1) absorption of an oil drop to a gas bubble due to precipitation of a bubble on the oil surface and collision between the drop and bubble; (2) entrapment of a gas bubble in a flocculated structure of oil drops as it rises; and (3) absorption of bubbles into a flocculated structure as it forms.For dissolved-gas flotation, all these mechanisms probably influence oil removal interdependently. SPEJ P. 579^


2009 ◽  
Vol 59 (7) ◽  
pp. 1361-1369 ◽  
Author(s):  
Edison Gil Pavas ◽  
Miguel Ángel Gómez-García

This work deals with the treatment of the wastewaters resulting from the process of dyeing flowers. In some local cases for growing flowers near to Medellín (Colombia), wastewater color was found to be one of the main problems in meeting local effluent standards. Wastewaters were treated by photodegradation process (which includes photocatalysis) to achieve the degradation of dyes mixture and organic matter in the wastewater. A multifactorial experimental design was proposed, including as experimental factors the following variables: pH, and the concentration of both catalyst (TiO2) and hydrogen peroxide (H2O2). According to the obtained results, at the optimized variables values, it is possible to reach a 99% reduction of dyes, a 76.9% of mineralization (TOC) and a final biodegradability of 0.834. Kinetic analysis allows proposing a pseudo first order reaction for the reduction, the mineralization, and the biodegradation processes.


Sign in / Sign up

Export Citation Format

Share Document