scholarly journals Design and development of ultra-light front and rear axle of experimental vehicle

2020 ◽  
Vol 10 (1) ◽  
pp. 232-237
Author(s):  
Jan Kral ◽  
Miroslav Palko ◽  
Maroš Palko ◽  
Ludmila Pavlikova

AbstractShell Eco-marathon is an international competition to develop a vehicle with the lowest fuel consumption. The Faculty of Mechanical Engineering of the Technical University in Košice has been involved in this competition for 25 years, during which it developed 8 vehicles. For vehicles are important not only low fuel consumption but also high safety. In addition to the low aerodynamic drag of the vehicle, the low weight of the vehicle is important to achieve low fuel consumption. This is achieved by using ultra-light and solid materials in all parts of the vehicle. The latest generation vehicle uses a self-supporting body, which has increased requirements for front and rear stiffness, as discussed in this article.

Author(s):  
Guilherme Medeiros Soares de Andrade ◽  
Fernando Wesley Cavalcanti de Araújo ◽  
Maurício Pereira Magalhães de Novaes Santos ◽  
Silvio Jacks dos Anjos Garnés ◽  
Fábio Santana Magnani

Standard driving cycles are usually used to compare vehicles from distinct regions, and local driving cycles reproduce more realistic conditions in specific regions. In this article, we employed a simple methodology for developing local driving cycles and subsequently performed a kinematic and energy analysis. As an application, we employed the methodology for cars and motorcycles in Recife, Brazil. The speed profile was collected using a smartphone (1 Hz) validated against a high precision global positioning system (10 Hz), presenting a mean absolute error of 3 km/h. The driving cycles were thus developed using the micro-trip method. The kinematic analysis indicated that motorcycles had a higher average speed and acceleration (32.5 km/h, 0.84 m/s2) than cars (22.6 km/h, 0.55 m/s2). As a result of the energy analysis, it was found that inertia is responsible for most of the fuel consumption for both cars (59%) and motorcycles (41%), but for motorcycles the aerodynamic drag is also relevant (36%). With regards to fuel consumption, it was found that the standard driving cycle used in Brazil (FTP-75; 2.47 MJ/km for cars and 0.84 MJ/km for motorcycles) adequately represents the driving profile for cars (2.46 MJ/km), and to a lesser extent motorcycles (0.91 MJ/km) in off-peak conditions. Finally, we evaluated the influence of the vehicle category on energy consumption, obtaining a maximum difference of 38% between a 2.0 L sports utility vehicle and a 1.0 L hatchback.


Author(s):  
Lakshay Khera ◽  
Niraj Kumar ◽  
Ambrish Maurya

Currently demand of Indian budget cars also called people’s car in India is in great demand and around 1 million cars have been sold in the last financial year with 12% increase of sales in every forthcoming year. These are categorized in sub 4m category of sedan, hatchbacks and medium size SUVs’ and their price ranges between 7 to 11 lakhs. The aerodynamics significantly affects the performance of the vehicle particularly at high speed. The manufactures are more focused on styling and giving a luxury look and other features of the car which sometimes make them to compromise on its aerodynamic design. This may lead to increase in fuel consumption at Indian road conditions. A cost-effective way to reduce fuel consumption, drag coefficient, lift force is to improve aerodynamic behavior and reduce the aerodynamic drag. The software used in this work is Solidworks, Ansys Fluent and commercial CFD post. Consequently, of using this software, it allows us to apply, learn and link technical knowledge of aerodynamics and computer knowledge.


Author(s):  
G. Galmarini ◽  
G. Mastinu ◽  
M. Gobbi ◽  
M. Mauri

The construction of a hydrogen powered electrical race vehicle is presented in this paper. This prototype has been developed to be used in the Shell Eco-Marathon competition. The main aim of this event is to reduce the fuel consumption. According to the technical regulations, the minimum space requirement has been estimated on the basis of the driver anthropometric dimensions. A high performance aerodynamic shape has been developed by starting from an axis-symmetric body which has been optimized for reducing the aerodynamic drag while running close to the ground. CFD analysis has been performed to refine the vehicle shape and to reach the final body geometry. With the help of the FEM analysis, a complex CFRP layout of a monocoque chassis has been defined in order to maximize the body stiffness and to reduce the mass. All the subsystems have been optimized both to reduce the resistance of the vehicle and to maximize the powertrain efficiency. Lab tests have been performed to validate the CFD and FEM analysis. The result of this work is the design of a vehicle, optimized in shape, mass and efficiency, to take part at Shell Eco-Marathon competition.


2010 ◽  
Vol 8 (2) ◽  
pp. 1441-1446 ◽  
Author(s):  
Danardono A. Sumarsono ◽  
Gandjar Kiswanto ◽  
Ario S. Baskoro ◽  
Nandy S. Putra ◽  
Yulianto S. Nugroho

Author(s):  
Jan Muller

This work deals with aerofoil aerodynamic features optimization, not only to improve flight features, but also to improve economy, ecology and safety of parameters of flight technique. In cruise mission, occupying the most flight time, the most important parameter is aerodynamic drag, which directly influences the aeroplane operational economy of transportation. Drag reduction is adequately reflected in the fuel consumption reduction. Consumption reduction is also adequately reflected in the flight ecology. In take-off and landing mission, the safety is priority and directly influences the aerofoil geometry. For cruise mission the new modified evolutionary algorithms (EA) are used to parameters incoming to Bezier-PARSEC 3434 parametrization. Such aerofoil is processed and evaluated by the Xfoil program. The change of model parameters results to optimal aerofoil shape. The DCAG (Direct Control Aerofoil Geometry) is unique developed mechanical device, makes possible the change of curvature of aerofoil, and also aerofoil geometry. DCAG is based on the rotary principle, which makes it possible to define the curvature of aerofoil for every roll as well as defining the geometry in the variable parts of aerofoil. For take-off and landing mission the best combination of slots and flaps is choosed. To improve of laminarity and reduce turbulent flow the DCAG is used. The work results to optimization, which is 50 times faster in comparison to ordinary optimization, with minimum of input parameters (flight speed, chord length, range of angles of attack and fitness function). The optimized aerofoil can achieve savings in fuel consumption up to 44% in comparison with unoptimized aerofoil, the aerodynamic drag reduction up to 44%. The output was checked by ANSYS Fluent simulation.


2019 ◽  
Vol 8 (3) ◽  
pp. 5294-5300 ◽  

Country’s economy depend on well-maintained roads as they are major means of transportation. It becomes essential to identify pothole and humps in order to avoid accidents and damages to the vehicles that is caused because of distress to drivers and also to save fuel consumption. In this regard, this work presents a simple solution to detect potholes and humps and hence avoid accidents and help drivers. Potholes are detected using Image Processing Technique and Ultrasonic Sensors are used to detect humps. Controlling device used is Raspberry Pi. The system acquires the geographical position of potholes using Wi-Fi and transmits it to authorities to take corrective measures


POROS ◽  
2017 ◽  
Vol 13 (2) ◽  
pp. 51
Author(s):  
Alvinsen Alfonso ◽  
Abrar Riza ◽  
I Made Kartika

Abstract: This study discusses the effect of variations in the diameter of the main jet nozzles on the performance of the motor fuel. Performance analysis covering torque, power and specific fuel consumption (sfc). With the aim to determine the maximum performance that can be generated on any variation of the diameter of the main jet nozzles. At the time of this experiment performed with the engine 4 stroke Honda GX-160, using hydro tool dynamometer and using premium fuel. The data taken is the engine rotation, the force measured on the dynamometer and the time spent fuels. Tests conducted at the Laboratory of Energy Conversion Mechanical Engineering UNTAR Jakarta. Testing is done by providing the machine with a load variation of rotation remains in order to obtain a force on each spin machine with a main jet nozzle diameter variations. Variations rev the engine starts at the minimum rotation until maksimuml with fixed load, variations in the diameter of the main jet nozzles on testing. 


2020 ◽  
Vol 99 (3) ◽  
pp. 86-96
Author(s):  
S. Zinchenko ◽  
◽  
A. Ben ◽  
P. Nosov ◽  
V. Mateichuk ◽  
...  

The article discusses the issues of automatic control of the vessel’s movement using excessive control, which allows to organize the movement of the vessel without a drift angle, to reduce the hydrodynamic resistance and fuel consumption. Issues of reducing energy consumption and fuel economy on board, as well as related issues of reducing emissions and improving the environment are especially relevant at the present time. A brief review of literature devoted to improving the energy efficiency of ships was carried out. As a result of the analysis, it was found that the issues of improving energy efficiency are solved in various ways, for example, constructively, by reducing weight, hydrodynamic and aerodynamic drag of the hull, using a sail, creating more advanced power plants, however, the authors have not found methods and algorithms for reducing hydrodynamic drag and fuel consumption through the use of excessive control. It is concluded that the development of such systems is relevant. Mathematical, algorithmic, and software have been developed for an onboard controller simulator of a vessel’s motion control system with excessive control, the operability and efficiency of which has been verified by numerical simulation in a closed circuit with a mathematical model of the control object for various types of vessels, navigation areas and weather conditions. The experiments have confirmed the efficiency and effectiveness of the developed method, algorithmic and software, and allow us to recommend them for practical use in the development of mathematical support for vessel control systems with excessive control.


Author(s):  
Anu R. Nair ◽  
Fred Barez ◽  
Ernie Thurlow ◽  
Metin Ozen

Heavy commercial vehicles due to their un-streamlined body shapes are aerodynamically inefficient due to higher fuel consumption as compared to passenger vehicles. The rising demand and use of fossil fuel escalate the amount of carbon dioxide emitted to the environment, thus more efficient tractor-trailer design becomes necessary to be developed. Fuel consumption can be reduced by either improving the driveline losses or by reducing the external forces acting on the truck. These external forces include rolling resistance and aerodynamic drag. When driving at most of the fuel is used to overcome the drag force, thus aerodynamic drag proves an area of interest to study to develop an efficient tractor-trailer design. Tractor-trailers are equipped with standard add-on components such as roof defectors, boat tails and side skirts. Modification of these components helps reduce drag coefficient and improve fuel efficiency. The objective of this study is to determine the most effective geometry of trailer add-on devices in semi-truck trailer design to reduce the drag coefficient to improve fuel efficiency and vehicle stability. The methodology consisted of CFD analysis on Mercedes Benz Actros using ANSYS FLUENT. The simulation was performed on the tractor-trailer at a speed of 30m/s. The analysis was performed with various types of add-on devices such as side skirts, boat tail and vortex generators. From the simulation results, it was observed that addition of tractor-trailer add-on devices proved beneficial over modifying trailer geometry. Combination of add-on devices in the trailer underbody, rear and front sections was more beneficial in reducing drag coefficient as compared to their individual application. Improving fuel efficiency by 17.74%. Stability of the tractor-trailer is improved due to the add-on devices creating a streamlined body and reducing the low-pressure region at the rear end of the trailer.


Author(s):  
Jeff Howell ◽  
David Forbes ◽  
Martin Passmore

The aerodynamic drag characteristics of a passenger car have, typically, been defined by a single parameter: the drag coefficient at a yaw angle of 0°. Although this has been acceptable in the past, it does not provide an accurate measure of the effect of aerodynamic drag on fuel consumption because the important influence of the wind has been excluded. The result of using drag coefficients at a yaw angle of 0° produces an underprediction of the aerodynamic component of fuel consumption that does not reflect the on-road conditions. An alternative measure of the aerodynamic drag should take into account the effect of non-zero yaw angles, and a variant of wind-averaged drag is suggested as the best option. A wind-averaged drag coefficient is usually derived for a particular vehicle speed using a representative wind speed distribution. In the particular case where the road speed distribution is specified, such as for a driving cycle to determine fuel economy, a relevant drag coefficient can be derived by using a weighted road speed. An effective drag coefficient is determined with this approach for a range of cars using the proposed test cycle for the Worldwide Harmonised Light Vehicle Test Procedure, WLTP. The wind input acting on the car has been updated for this paper using recent meteorological data and an understanding of the effect of a shear flow on the drag loading obtained from a computational fluid dynamics study. In order to determine the different mean wind velocities acting on the car, a terrain-related wind profile has also been applied to the various phases of the driving cycle. An overall drag coefficient is derived from the work done over the full cycle. This cycle-averaged drag coefficient is shown to be significantly higher than the nominal drag coefficient at a yaw angle of 0°.


Sign in / Sign up

Export Citation Format

Share Document