Highly aligned graphene oxide/waterborne polyurethane fabricated by in-situ polymerization at low temperature

e-Polymers ◽  
2018 ◽  
Vol 18 (1) ◽  
pp. 75-84 ◽  
Author(s):  
Lei Sang ◽  
Wentao Hao ◽  
Yuanyuan Zhao ◽  
Lulu Yao ◽  
Peng Cui

AbstractNanocomposites of waterborne polyurethane (WPU) containing graphene oxide sheets (GO) were prepared by an in-situ polymerization method at low temperature. The morphology and interface structure were characterized by atomic force microscopy (AFM), transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Without undergoing complicated functionalization processes, GO can be finely embed into a WPU matrix and present high degree of orientation at high GO contents, due to the formation of chemical bonds and hydrogen bonding. From the Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) and dynamic mechanical analysis (DMA) results, incorporation of GO exists in two ways and shows inverse effects. At a content of 2.0 wt.% GO loading, the tensile elastic modulus of the GO-WPU film increased by 193% to neat WPU. The nanocomposites also displayed 30°C higher thermal stability than WPU in thermogravimetric (TG) curves. This environment-friendly method may pave the way to design graphene-based polymer composites.

2010 ◽  
Vol 148-149 ◽  
pp. 1547-1550 ◽  
Author(s):  
Hua Lan Wang ◽  
Qing Li Hao ◽  
Xi Feng Xia ◽  
Zhi Jia Wang ◽  
Jiao Tian ◽  
...  

A graphene oxide/polyaniline composite was synthesized by an in situ polymerization process. This product was simply prepared in an ethylene glycol medium, using ammonium persulfate as oxidant in ice bath. The composite was characterized by field emission scanning electron microscopy, transmission electron microscopy, X-Ray photoelectron spectroscopy, Raman spectroscopy and electrochemical test. The composite material showed a good electrochemical performance.


Author(s):  
Syed Shahabuddin ◽  
Norazilawati Muhamad Sarih ◽  
Muhammad Afzal Kamboh ◽  
Hamid Rashidi Nodeh ◽  
Sharifah Mohamad

The present investigation highlights the synthesis of polyaniline (PANI) coated graphene oxide doped with SrTiO3 nanocube nanocomposites through facile in-situ oxidative polymerization method for the efficient removal of carcinogenic dyes, namely, the cationic dye methylene blue (MB) and the anionic dye methyl orange (MO). The synthesised nanocomposites were characterised by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). The adsorption efficiencies of graphene oxide (GO), PANI homopolymer and SrTiO3 nanocubes-doped nanocomposites were assessed by monitoring the adsorption of methylene blue and methyl orange dyes from aqueous solution. The adsorption efficiency of nanocomposites doped with SrTiO3 nanocubes were found to be of higher magnitude as compared with undoped nanocomposite. Moreover, the nanocomposite with 2 wt% SrTiO3 with respect to graphene oxide demonstrated excellent adsorption behaviour with 99% and 91% removal of MB and MO respectively, in a very short duration of time.


2019 ◽  
Vol 55 (27) ◽  
pp. 3876-3878 ◽  
Author(s):  
Eleonora Aneggi ◽  
Jordi Llorca ◽  
Alessandro Trovarelli ◽  
Mimoun Aouine ◽  
Philippe Vernoux

In situ environmental transmission electron microscopy discloses room temperature carbon soot oxidation by ceria–zirconia at the nanoscale.


2020 ◽  
pp. 095400832094035
Author(s):  
Xing Wu ◽  
Zhengyu Jin ◽  
Yuejin Zhu ◽  
Haichao Zhao

In order to achieve good dispersion of graphene in polyimide (PI), catecholated graphene (G-Cat) was prepared by 1,3-dipolar cycloaddition reaction of N-methylglycine and 3,4-dihydroxybenzaldehyde with graphene sheets. G-Cat/PI composites were prepared by in situ polymerization with pyromellitic dianhydride and 4,4-oxydianiline in the presence of G-Cat. The successful modification of graphene was proved by infrared spectroscopy, Raman spectroscopy, and transmission electron microscopy. The comprehensive properties of G-Cat/PI composites were studied by tensile, dynamic mechanical analysis, thermogravimetric analysis, and friction and wear tests. By observing the morphology of wear marks, the friction and wear properties of the composites were emphatically analyzed. Therefore, graphene/PI composites were expected to have broad application prospects in lubrication and wear resistance.


2013 ◽  
Vol 457-458 ◽  
pp. 244-247
Author(s):  
Min Li ◽  
Li Guang Xiao ◽  
Hong Kai Zhao

Polyethylene/montmorillonite (PE/MMT) nanocomposites were prepared by in situ polymerization. The morphology of MMT/MgCl2/TiCl4 catalyst and PE/MMT nanocomposites was investigated by scanning electron microscopy (SEM). It can be seen that MMT/MgCl2/TiCl4 catalyst remained the original MMT sheet structures and many holes were found in MMT and the morphology of PE/MMT nanocomposites is part of the sheet in the form of existence, as most of the petal structure. X-ray diffraction (XRD) and transmission electron microscopy (TEM) were carried out to characterize all the samples. XRD results reveal that the original basal reflection peak of PEI1 and PEI2 disappears completely and that of PEI3 become very weak. MMT/MgCl2/TiCl4 catalyst was finely dispersed in the PE matrix. Instead of being individually dispersed, most layers were found in thin stacks comprising several swollen layers.


2019 ◽  
Vol 2019 ◽  
pp. 1-17
Author(s):  
M. A. Domínguez-Crespo ◽  
A. B. López-Oyama ◽  
A. M. Torres-Huerta ◽  
A. R. Hernández-Basilio ◽  
D. Palma-Ramírez ◽  
...  

In this work, hybrid composites were prepared using polyaniline (PANI) and electrochemically reduced graphene oxide (ERGO) by in situ polymerization. ERGO powders were obtained by a two-way route, Hummer’s method, and one-step potential (−2 V) followed by annealing process at 400°C (TERGO powders): different quantities of TERGO fine particles (10, 20, and 30 wt%) were added to the in situ PANI polymerization in order to produce the hybrid composites. The morphology and structure of the PANI/TERGO compounds were characterized by Raman spectroscopy, ultraviolet-visible spectroscopy (UV-Vis), X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Thermal treatment of ERGO powders pointed out high-defect surfaces with a wrinkle-type morphology (ID/IG ratio~0.90). The emeraldine phase of PANI was obtained with a maximum value of 61%, which decreases with the amount of TERGO powders. It is also seen that composites displayed a combined morphology between PANI matrix and TERGO powders, confirming a physical interaction between both morphologies. The amount of TERGO particles into the polymeric matrix also modifies the sample microstructure from a semispherical shape to extend sheets, where PANI is sandwiched between TERGO layers. Electrical conductivity of composites slightly increases independent of the TERGO amount (30 S/m and 39 S/m) due to the rough TERGO surface that conditioned the homogeneous nucleation of a large amount of polymer (PANI) reducing the area to move the electrical charge.


2009 ◽  
Vol 105 (9) ◽  
pp. 093506 ◽  
Author(s):  
Alessandra Alberti ◽  
Corrado Bongiorno ◽  
Cristian Mocuta ◽  
Till Metzger ◽  
Corrado Spinella ◽  
...  

1988 ◽  
Vol 116 ◽  
Author(s):  
R.A. Rudder ◽  
S.V. Hattangady ◽  
J.B. Posthill ◽  
R.J. Markunas

AbstractA low temperature process for cleaning Si(100) surfaces has been developed. It involves a combination of a modified hot RCA wet chemistry treatment and an in situ hydrogen treatment for the removal of oxides and carbonaceous material from the Si surface. While this treatment is successful in producing reflection high energy electron diffraction patterns which show 1/2-order reconstruction lines, subsequent Ge heteroepitaxial growth at 300°C contains a high density of microtwins. Transmission electron microscopy reveals that most of the microtwins do not propagate to the wafer surface. Furthermore, the Ge/Si interface is not abrupt, and there are regions that do not appear crystalline. This suggests that some contamination is still present on the Si(100) surface after the in situ hydrogen treatments.


Catalysts ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 720 ◽  
Author(s):  
Junwen Wang ◽  
Lichao Ma ◽  
Chuanmin Ding ◽  
Yanan Xue ◽  
Yongkang Zhang ◽  
...  

Highly dispersed ultra-small Pt nanoparticles limited in nanosized silicalite-1 zeolite were prepared by in situ encapsulation strategy using H2PtCl6·6H2O as a precursor and tetrapropylammonium hydroxide as a template. The prepared Pt@S-1 catalyst was characterized by X-ray diffraction (XRD), inductively coupled plasma (ICP), transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM), N2 adsorption-desorption, CO adsorption, and TGA techniques and exhibited unmatched catalytic activity and sintering resistance in the partial oxidation of methane to syngas. Strikingly, Pt@S-1 catalyst with further reduced size and increased dispersibility of Pt nanoparticles showed enhanced catalytic activity after low-temperature oxygen calcination. However, for Pt/S-1 catalyst, low-temperature oxygen calcination did not improve its catalytic activity.


Sign in / Sign up

Export Citation Format

Share Document