scholarly journals Antibacterial epoxy composites with addition of natural Artemisia annua waste

e-Polymers ◽  
2020 ◽  
Vol 20 (1) ◽  
pp. 262-271
Author(s):  
Chun Wu ◽  
Yongsi Yan ◽  
Yucheng Wang ◽  
Ping Sun ◽  
Rongrong Qi

AbstractAntibacterial epoxy resins (EP) have great potential in medical and electronic fields. During the process of extracting artemisinin from Artemisia annua, artemisia naphtha (AN) is generated as waste. The components of AN show antibacterial activity, and hence, it is introduced as a novel antibacterial agent in the epoxy matrix. In this study, the properties of epoxy resins with various AN loading were investigated. The results showed that AN/EP composites presented strong antibacterial activity against Escherichia coli and Staphylococcus aureus at the sterilization ratio of 100% against E. coli and 99.96% against S. aureus, respectively. Meanwhile, the thermal properties (curing temperature and glass transition temperature) of AN/EP composites remained well, and the mechanical property was even improved. Especially, the flexural strength of AN/EP composites could be reinforced by 62.9% when the content of AN was up to 5 wt%. For comparison, Artemisia annua powder (AAP), which was directly smashed from natural A. annua, was also mixed with epoxy resins as an antibacterial agent and showed excellent antibacterial property. Therefore, antibacterial epoxy composites containing A. annua waste as a natural resource with the enhanced mechanical property may have enormous potential in future biological and healthcare fields.

Author(s):  
Shalsh F J ◽  
Altaif K I ◽  
Zharif DM ◽  
Hailat IA ◽  
Alqaisi KM ◽  
...  

In this study we examined P. betle antibacterial property on two bacterial species namely: Streptococcus agalactiae and Escherichia coli. The extract of P. betle was prepared by mixing 2 gm of P. betle powder with 20 ml of 70% ethanol. Then, the solvent was evaporated by using vacuum evaporator and the residue was freeze dried and stored at -20 ºC. The P. betle extract divided into three different concentrations that are 50 mg/ml, 75 mg/ml and 100 mg/ml. The results revealed that the leaves of Piper betle have many benefits including antibacterial activity. The three concentrations showed an effective zone of inhibition against S. agalactiae and E. coli using Kirby-Baeur method. In addition, the minimal inhibitory concentration (MIC) confirms the effectiveness of P. betle. This study findings indicated that P. betle extract can be a new source of antibacterial agent and an alternative antibacterial for control of S. agalactiae and to certain extant against E. coli infections.


2018 ◽  
Vol 16 (2) ◽  
pp. 104-113 ◽  
Author(s):  
Shyamal Baruah ◽  
Amrit Puzari ◽  
Farhana Sultana ◽  
Jayanta Barman

Introduction: A series of (R)-(-)-4-Phenyl-2 oxazolidinone based azetidinones (4a-i) were synthesized from the reaction of (2-Oxo-4-phenyl-oxazolidin-3-yl) acetic acid with aromatic imines (3a-i) in the presence of Thionyl chloride and Triethylamine as a base. Methods: The transformation proceeds through the formation of acid chloride to ketene which finally forms the azetidinones through [2+2] cycloaddition with aromatic imines. Products obtained were screened to evaluate their antibacterial activity with respect to known bacteria like Escherichia Coli (E. Coli) and Bacillus subtilis. Results and Conclusion: In most of the cases, azetidinones were found to exhibit superior antimicrobial properties than oxazolidinones. They were found to be a good inhibitor of gram-positive and gramnegative bacteria. Enhancement of antibacterial property can be attributed to the presence of azetidinone ring and hydrophobic alkyl side chain in the scaffolds.


2020 ◽  
Vol 21 (6) ◽  
Author(s):  
AMANDA FIRZA RUSDARYANTI ◽  
ULFAH AMALIA ◽  
SLAMET SUHARTO

Abstract. Rusdaryanti AF, Amalia U, Suharto S. 2020. Antibacterial activity of CaO from blood cockle shells (Anadara granosa) calcination against Escherichia coli. Biodiversitas 21: 2826-2830. Calcium carbonate (CaCO3) in blood clamp shells (BCS) was able to be converted into calcium oxide (CaO) through a calcination process. Some research stated that CaO can be used in the food industries b, one of which is as an antibacterial agent. The purpose of this study was to determine the most optimal size of BCS's powder during calcination as an antibacterial agent and its effect on the activity of Escherichia coli. Data were analyzed using analysis of variance and Kruskal-Wallis test. The results showed that 200 mesh size of BCS’s powder produced the highest yield of CaO at about 98.68% compared to 120 and 230 mesh size. The best concentration of CaO powder as an antibacterial was 3.5% with a pH of 11.3 ± 0.17. CaO powder had antibacterial activity against E. coli with minimum inhibitory concentration’s value (MIC) of-0.115; a minimum bactericidal concentration’s value (MBC) of 0 CFU/mL; inhibition zone of 3.23 ± 0.2 mm. By the PCR method, DNA degradation has occurred in E. coli cells. The differences of CaO powder concentration had significant effect (P <0.05) on the inhibition zone of E. coli.


Polymers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 3022
Author(s):  
Chia-Wei Chang ◽  
Kun-Tsung Lu

In our previous report, the antibacterial agents with different metals, mono(hydroxyethoxyethyl)phthalate [M(HEEP)2, M = Zn, Mn, and Ca], were synthesized. For increasing their yields, modified synthesis and purified processes were further investigated. The result of energy-dispersive X-ray spectroscopy showed the M(HEEP)2 could be stable and successfully synthesized, and their yields were raised to 73–85% from our previous report of 43–55%. For ultraviolet-cured wood floor coating application, the Zn(HEEP)2 was selected as an antibacterial agent and mixed with commercial UV wood floor coating. The effects on the antibacterial activity of UV films with different Zn(HEEP)2 additions of 0, 4, 8, and 12 phr as well as the commercial nano-Ag of 12 phr against Escherichia coli were evaluated. In the static antibacterial test, the UV films with Zn(HEEP)2 additions had similar antibacterial activity of 57–59%. In another dynamic shaking antibacterial test, the film containing 12 phr Zn(HEEP)2 had the best antibacterial activity among all the UV films. On the film properties, the Zn(HEEP)2-containing UV films had lower gloss and abrasion resistance, and slightly increased the hardness than those of UV film without Zn(HEEP)2 addition. However, there were no noticeable differences in mass retention, lightfastness, and thermal stability between UV films with and without the Zn(HEEP)2 addition. In this study, the 12 phr Zn(HEEP)2-containing UV film provided the best antibacterial activity against E. coli and had the balanced film properties for application on the UV wood floor coating.


Author(s):  
Kyoung- Sun Seo ◽  
Seong Woo Jin ◽  
Seongkyu Choi ◽  
Kyeong Won Yun

The antibacterial activity of three Cupressaceae plants (Thujaoccidentalis,ThujaorientalisandChamaecyparisobtusa) was tested against three bacteria using the agar diffusion method. The ether and ethylacetate fraction of crude methanol extract from the three plants showed potent antibacterial activity against the tested microorganisms. The result showed that Staphylococcus aureus revealed the most sensitivity among the tested bacteria. Thujaoccidentalisether fraction and Thujaorientalis hexane fraction exhibited the highest antibacterial activity against Staphylococcus aureus. E. coli was shown the highest MIC values compared to the other two tested bacteria, which indicates the lowest antibacterial activity against the bacterium. This study promises an interesting future for designing a potentially active antibacterial agent from the three Cupressaceae plants.


2020 ◽  
Vol 15 (6) ◽  
pp. 665-679
Author(s):  
Alok K. Srivastava ◽  
Lokesh K. Pandey

Background: [1, 3, 4]oxadiazolenone core containing chalcones and nucleosides were synthesized by Claisen-Schmidt condensation of a variety of benzaldehyde derivatives, obtained from oxidation of substituted 5-(3/6 substituted-4-Methylphenyl)-1, 3, 4-oxadiazole-2(3H)-one and various substituted acetophenone. The resultant chalcones were coupled with penta-O-acetylglucopyranose followed by deacetylation to get [1, 3, 4] oxadiazolenone core containing chalcones and nucleosides. Various analytical techniques viz IR, NMR, LC-MS and elemental analysis were used to confirm the structure of the synthesised compounds.The compounds were targeted against Bacillus subtilis, Staphylococcus aureus and Escherichia coli for antibacterial activity and Aspergillus flavus, Aspergillus niger and Fusarium oxysporum for antifungal activity. Methods: A mixture of Acid hydrazides (3.0 mmol) and N, Nʹ- carbonyl diimidazole (3.3 mmol) in 15 mL of dioxane was refluxed to afford substituted [1, 3, 4]-oxadiazole-2(3H)-one. The resulted [1, 3, 4]- oxadiazole-2(3H)-one (1.42 mmol) was oxidized with Chromyl chloride (1.5 mL) in 20 mL of carbon tetra chloride and condensed with acetophenones (1.42 mmol) to get chalcones 4. The equimolar ratio of obtained chalcones 4 and β -D-1,2,3,4,6- penta-O-acetylglucopyranose in presence of iodine was refluxed to get nucleosides 5. The [1, 3, 4] oxadiazolenone core containing chalcones 4 and nucleosides 5 were tested to determined minimum inhibitory concentration (MIC) value with the experimental procedure of Benson using disc-diffusion method. All compounds were tested at concentration of 5 mg/mL, 2.5 mg/mL, 1.25 mg/mL, 0.62 mg/mL, 0.31 mg/mL and 0.15 mg/mL for antifungal activity against three strains of pathogenic fungi Aspergillus flavus (A. flavus), Aspergillus niger (A. niger) and Fusarium oxysporum (F. oxysporum) and for antibacterial activity against Gram-negative bacterium: Escherichia coli (E. coli), and two Gram-positive bacteria: Staphylococcus aureus (S. aureus) and Bacillus subtilis(B. subtilis). Result: The chalcones 4 and nucleosides 5 were screened for antibacterial activity against E. coli, S. aureus and B. subtilis whereas antifungal activity against A. flavus, A. niger and F. oxysporum. Compounds 4a-t showed good antibacterial activity whereas compounds 5a-t containing glucose moiety showed better activity against fungi. The glucose moiety of compounds 5 helps to enter into the cell wall of fungi and control the cell growth. Conclusion: Chalcones 4 and nucleosides 5 incorporating [1, 3, 4] oxadiazolenone core were synthesized and characterized by various spectral techniques and elemental analysis. These compounds were evaluated for their antifungal activity against three fungi; viz. A. flavus, A. niger and F. oxysporum. In addition to this, synthesized compounds were evaluated for their antibacterial activity against gram negative bacteria E. Coli and gram positive bacteria S. aureus, B. subtilis. Compounds 4a-t showed good antibacterial activity whereas 5a-t showed better activity against fungi.


e-Polymers ◽  
2020 ◽  
Vol 20 (1) ◽  
pp. 673-681
Author(s):  
Yanchao Qiao ◽  
Lijie Duan

AbstractAntibacterial materials have found widespread interest in different fields nowadays. In this study, curcumin (Cur) was incorporated into the polyvinyl butyral (PVB) matrix by dissolving in ethanol for improving the functional properties of a pure PVB film. We found that Cur was uniformly dispersed in the PVB matrix, which showed good compatibility. Moreover, the incorporation of Cur could also improve thermal stability, hydrophilicity, and mechanical property. The UV-vis spectra of the PVB–Cur film demonstrated that the film could block ultraviolet radiation. Subsequently, the antibacterial activity of the PVB–Cur film was measured by the colony-counting method against S. aureus and E. coli. The results showed that the PVB–Cur film exhibited good antibacterial activity. Therefore, the PVB–Cur film was considered as a promising material for food and medical packaging applications.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Tessa B. Moyer ◽  
Ashleigh L. Purvis ◽  
Andrew J. Wommack ◽  
Leslie M. Hicks

Abstract Background Plant defensins are a broadly distributed family of antimicrobial peptides which have been primarily studied for agriculturally relevant antifungal activity. Recent studies have probed defensins against Gram-negative bacteria revealing evidence for multiple mechanisms of action including membrane lysis and ribosomal inhibition. Herein, a truncated synthetic analog containing the γ-core motif of Amaranthus tricolor DEF2 (Atr-DEF2) reveals Gram-negative antibacterial activity and its mechanism of action is probed via proteomics, outer membrane permeability studies, and iron reduction/chelation assays. Results Atr-DEF2(G39-C54) demonstrated activity against two Gram-negative human bacterial pathogens, Escherichia coli and Klebsiella pneumoniae. Quantitative proteomics revealed changes in the E. coli proteome in response to treatment of sub-lethal concentrations of the truncated defensin, including bacterial outer membrane (OM) and iron acquisition/processing related proteins. Modification of OM charge is a common response of Gram-negative bacteria to membrane lytic antimicrobial peptides (AMPs) to reduce electrostatic interactions, and this mechanism of action was confirmed for Atr-DEF2(G39-C54) via an N-phenylnaphthalen-1-amine uptake assay. Additionally, in vitro assays confirmed the capacity of Atr-DEF2(G39-C54) to reduce Fe3+ and chelate Fe2+ at cell culture relevant concentrations, thus limiting the availability of essential enzymatic cofactors. Conclusions This study highlights the utility of plant defensin γ-core motif synthetic analogs for characterization of novel defensin activity. Proteomic changes in E. coli after treatment with Atr-DEF2(G39-C54) supported the hypothesis that membrane lysis is an important component of γ-core motif mediated antibacterial activity but also emphasized that other properties, such as metal sequestration, may contribute to a multifaceted mechanism of action.


2011 ◽  
Vol 332-334 ◽  
pp. 77-80 ◽  
Author(s):  
Chuan Jie Zhang ◽  
Hong Yang ◽  
Yun Liu ◽  
Ping Zhu

Cotton fabric with excellent antibacterial properties was obtained by treated with polyamide-amine (PAMAM) dendrimers as a carrier and silver nitrate as an antibacterial agent. The antibacterial cotton fabrics were prepared by the methods of one-bath process and two-bath process. Antibacterial activity of cotton fabrics treated by two different methods was good, but the antibacterial durability of cotton fabric treated with two-bath process was better than that treated with one-bath process. After 50 washing cycles, cotton fabric treated with two-bath process still had good antibacterial property and its inhibitory rate to Gram-positive S. aureus and Gram-negative E. coli was over 99 %. It was found that the breaking strength retention of finished cotton fabrics was 85.83 % and the decrease of cotton fabrics’ whiteness index was about 15 %.


2012 ◽  
Vol 550-553 ◽  
pp. 1026-1029
Author(s):  
Jian Xi Ren ◽  
Jing Ya Li ◽  
Zhi Feng Cai ◽  
Jin Ming Dai ◽  
Mei Niu ◽  
...  

Carbon microspheres (CMSs) were used as the carrier to prepare the Ag-loading CMSs (Ag/CMSs) antibacterial agent through the method of chemical adsorption. The morphologies and structures of modified CMSs were characterized by using the field emission Scanning Electron Microscope (SEM). The results showed that silver was absorbed on the surface of CMSs. The bacterial inhibition ring experiment showed that Ag/CMSs had good antibacterial activity against Staphylococcus aureus and Escherichia coli, meanwhile the diameters of the bacterial inhibition rings were 19 mm against Staphylococcus aureus and 21 mm against Escherichia coli, respectively.


Sign in / Sign up

Export Citation Format

Share Document