Preparation, Morphology and Thermal Properties of Rubber-Modified Polyester Resins

e-Polymers ◽  
2007 ◽  
Vol 7 (1) ◽  
Author(s):  
M O Munyati ◽  
P A Lovell

AbstractThe preparation of polyester resin blends consisting of an unsaturated polyester resin matrix and rubbery particles comprising three radially-alternating glassy and rubbery layers is described. The morphology of the resin blends was examined by transmission electron microscopy (TEM) while thermal properties were investigated by differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA). The results show that the particles were prepared with good control of particle size and morphology. DMTA results showed no reduction in the Tg of the matrix whilst the shear modulus of modified materials was found to be lower than that of the matrix material.

2011 ◽  
Vol 2011 ◽  
pp. 1-12 ◽  
Author(s):  
Farida Bensadoun ◽  
Nadir Kchit ◽  
Catherine Billotte ◽  
François Trochu ◽  
Edu Ruiz

Over the last few years, polymer/clay nanocomposites have been an area of intensive research due to their capacity to improve the properties of the polymer resin. These nanocharged polymers exhibit a complex rheological behavior due to their dispersed structure in the matrix. Thus, to gain fundamental understanding of nanocomposite dispersion, characterization of their internal structure and their rheological behavior is crucial. Such understanding is also key to determine the manufacturing conditions to produce these nanomaterials by liquid composite molding (LCM) process. This paper investigates the mix of nanoclays particles in an unsaturated polyester resin using three different dispersion techniques: manual mixing, sonication, and high shear mixing (HSM). This paper shows that the mixing method has a significant effect on the sample morphology. Rheology, scanning electron microscopy (SEM), and differential scanning calorimetry (DSC) characterization techniques were used to analyze the blends morphology and evaluate the nanoclays stacks/polymer matrix interaction. Several phenomena, such as shear thinning and premature polymer gelification, were notably observed.


2021 ◽  
pp. 51305
Author(s):  
Nora Abigail Wilson García ◽  
Jorge Luis Almaral Sánchez ◽  
Ramón Álvaro Vargas Ortiz ◽  
Abel Hurtado Macías ◽  
Nelly Flores Ramírez ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1122
Author(s):  
Przemysław Pączkowski ◽  
Andrzej Puszka ◽  
Malgorzata Miazga-Karska ◽  
Grażyna Ginalska ◽  
Barbara Gawdzik

This paper presents the properties of the wood-resin composites. For improving their antibacterial character, silver nanoparticles were incorporated into their structures. The properties of the obtained materials were analyzed in vitro for their anti-biofilm potency in contact with aerobic Gram-positive Staphylococcus aureus and Staphylococcus epidermidis; and aerobic Gram-negative Escherichia coli and Pseudomonas aeruginosa. These pathogens are responsible for various infections, including those associated with healthcare. The effect of silver nanoparticles incorporation on mechanical and thermomechanical properties as well as gloss were investigated for the samples of composites before and after accelerating aging tests. The results show that bacteria can colonize in various wrinkles and cracks on the composites with wood flour but also the surface of the cross-linked unsaturated polyester resin. The addition of nanosilver causes the death of bacteria. It also positively influences mechanical and thermomechanical properties as well as gloss of the resin.


Author(s):  
E. Dilara Koçak

Producing composites from natural fibers is known to be common. These fibers benefit from their mechanical performances, low density, and their biodegradability. However, it is necessary for the fibers to form adhesion in the matrix. Therefore, it is necessary to apply a chemical process to the surface of the fibers. In this study, four different processes in conventional and ultrasonic energies were applied on luffa cylindrical fibers. At the end of the application, a composite structure was formed on the fibers that were obtained by using unsaturated polyester resin. The changes in the characteristics of the composite structure were recorded by mechanical tests, Fourier transform infrared, X-ray diffractometer, and their morphological characteristics by means of scanning electron microscopy. Considering all the results, formic acid and acetic acid process results were found to adequately modify the fiber surfaces.


2020 ◽  
Vol 2 (1) ◽  
pp. 28-35
Author(s):  
Rokki Manurung ◽  
Sutan Simanjuntak ◽  
Jesayas Sembiring ◽  
Richard A.M. Napitupulu ◽  
Suriady Sihombing

Composites are materials which are mixed with one or more different and heterogeneous reinforcement. Matrix materials can generally be polymers, ceramics and metals. The matrix in the composite serves to distribute the load into all reinforcing material. Matrix properties are usually ductile. The reinforcing material in the composite has the role of holding the load received by the composite material. The nature of the reinforcing material is usually rigid and tough. Strengthening materials commonly used so far are carbon fiber, glass fiber, ceramics. The use of natural fibers as a type of fiber that has advantages began to be applied as a reinforcing material in polymer composites. This study seeks to see the effect of the use of bamboo natural fibers in polyester resin matrix on the strength of polymer composites with random and straight lengthwise fiber variations. From the tensile test results it can be seen that bamboo fibers can increase the strength of polymer composites made from polyester resin and the position of the longitudinal fibers gives a significantly more strength increase than random fibers.


2019 ◽  
Vol 25 ◽  
pp. 22-31 ◽  
Author(s):  
Farhana Islam ◽  
M. Naimul Islam ◽  
Shahirin Shahida ◽  
Harun Ar Rashid ◽  
Nanda Karmaker ◽  
...  

Jute fabrics reinforced Unsaturated Polyester Resin (UPR)-based composites were prepared by conventional hand lay-up technique. Different proportions (5 to 50% by weight) of fibre content was used in preparation of the composite. Tensile Strength (TS), Tensile Modulus (TM), Bending Modulus (BM), Bending Strength (BS), Impact Strength (IS) of the fabricated composites were studied. Upon each addition of fiber content in the matrix, mechanical properties of the composites were increased. The Tensile Strength (TS) of the 5% and 50% fiber reinforced composites was 18 MPa and 42 MPa respectively. Scanning Electron Microscopy (SEM) showed interfacial properties of the composites and it was revealed that the bond between fiber and matrix was excellent.


Polymers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 866 ◽  
Author(s):  
Alexandre L. Pereira ◽  
Mariana D. Banea ◽  
Jorge S.S. Neto ◽  
Daniel K.K. Cavalcanti

The main objective of this work was to investigate the effect of hybridization on the mechanical and thermal properties of intralaminar natural fiber-reinforced hybrid composites based on sisal. Ramie, sisal and curauá fibers were selected as natural fiber reinforcements for the epoxy matrix based composites, which were produced by the hand lay-up technique. Tensile, flexural and impact tests were carried out according to American society for testing and materials (ASTM) standards to characterize the hybrid composites, while differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) were used to evaluate the thermal properties. It was found that the mechanical properties are improved by hybridization of sisal based composites. The thermal analysis showed that the hybridization did not significantly affect the thermal stability of the composites. A scanning electron microscopy (SEM) was used to examine the fracture surface of the tested specimens. The SEM images showed a brittle fracture of the matrix and fiber breakage near the matrix.


DYNA ◽  
2020 ◽  
Vol 87 (212) ◽  
pp. 251-258
Author(s):  
Jorge Antonio Velasco Parra ◽  
Bladimir A. Ramón Valencia ◽  
William Javier Mora Espinosa

In the present investigation an alternative of recycling was evaluated for the residues derived from defective pieces of the ceramic industry, harnessing them as reinforcement in composite materials for the manufacture of parts used in the automotive sector. Sintered clay microparticles to 10% p/p were mixed in an unsaturated polyester resin matrix, through the cast molding technique. Bending tests were performed that showed an elastic-linear behavior, typical of a fragile material. The structure was analyzed through scanning electron microscopy, checking the fragile failure mechanism and a good dispersion of the microparticles. A simulation was carried out with the finite element method, for the design of a motorcycle brake lever, with results that demonstrate a better distribution of stresses and reduction in mass with respect to the original part. Finally, a prototype brake lever was manufactured using computationally validated geometry.


Sign in / Sign up

Export Citation Format

Share Document