scholarly journals Testing the suitability of dim sedimentary quartz from northern Switzerland for OSL burial dose estimation

2017 ◽  
Vol 44 (1) ◽  
pp. 66-76 ◽  
Author(s):  
Mareike Trauerstein ◽  
Sally E. Lowick ◽  
Frank Preusser ◽  
Heinz Veit

Abstract We investigate the suitability of sedimentary quartz associated with former glacial advances in northern Switzerland to provide reliable burial dose estimates using Optically Stimulated Luminescence (OSL). Previous studies on northern alpine quartz show that its signal characteristics can be poor and potentially problematic. We analyse quartz signals of small aliquots, which reveal the presence of a prominent medium or slow component in the initial part of some signals. Nonetheless, rejection of aliquots with unfavourable signal composition does not alter the burial dose estimates, but significantly reduces the data set for De determination. Signal lifetimes from isothermal decay measurements cover a wide range of values, yet the lowest lifetimes are high enough to guarantee a reliable burial dose estimate for samples of < 400 ka. Comparison of small aliquot and single grain burial dose distributions reveals that signal averaging masks partial bleaching in some of the samples. We therefore strongly recommend single grain measurements for samples from this setting and area, in order to exclude age overestimation due to partial bleaching.

2019 ◽  
Vol 16 (7) ◽  
pp. 808-817 ◽  
Author(s):  
Laxmi Banjare ◽  
Sant Kumar Verma ◽  
Akhlesh Kumar Jain ◽  
Suresh Thareja

Background: In spite of the availability of various treatment approaches including surgery, radiotherapy, and hormonal therapy, the steroidal aromatase inhibitors (SAIs) play a significant role as chemotherapeutic agents for the treatment of estrogen-dependent breast cancer with the benefit of reduced risk of recurrence. However, due to greater toxicity and side effects associated with currently available anti-breast cancer agents, there is emergent requirement to develop target-specific AIs with safer anti-breast cancer profile. Methods: It is challenging task to design target-specific and less toxic SAIs, though the molecular modeling tools viz. molecular docking simulations and QSAR have been continuing for more than two decades for the fast and efficient designing of novel, selective, potent and safe molecules against various biological targets to fight the number of dreaded diseases/disorders. In order to design novel and selective SAIs, structure guided molecular docking assisted alignment dependent 3D-QSAR studies was performed on a data set comprises of 22 molecules bearing steroidal scaffold with wide range of aromatase inhibitory activity. Results: 3D-QSAR model developed using molecular weighted (MW) extent alignment approach showed good statistical quality and predictive ability when compared to model developed using moments of inertia (MI) alignment approach. Conclusion: The explored binding interactions and generated pharmacophoric features (steric and electrostatic) of steroidal molecules could be exploited for further design, direct synthesis and development of new potential safer SAIs, that can be effective to reduce the mortality and morbidity associated with breast cancer.


Author(s):  
Eun-Young Mun ◽  
Anne E. Ray

Integrative data analysis (IDA) is a promising new approach in psychological research and has been well received in the field of alcohol research. This chapter provides a larger unifying research synthesis framework for IDA. Major advantages of IDA of individual participant-level data include better and more flexible ways to examine subgroups, model complex relationships, deal with methodological and clinical heterogeneity, and examine infrequently occurring behaviors. However, between-study heterogeneity in measures, designs, and samples and systematic study-level missing data are significant barriers to IDA and, more broadly, to large-scale research synthesis. Based on the authors’ experience working on the Project INTEGRATE data set, which combined individual participant-level data from 24 independent college brief alcohol intervention studies, it is also recognized that IDA investigations require a wide range of expertise and considerable resources and that some minimum standards for reporting IDA studies may be needed to improve transparency and quality of evidence.


Electronics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 348
Author(s):  
Choongsang Cho ◽  
Young Han Lee ◽  
Jongyoul Park ◽  
Sangkeun Lee

Semantic image segmentation has a wide range of applications. When it comes to medical image segmentation, its accuracy is even more important than those of other areas because the performance gives useful information directly applicable to disease diagnosis, surgical planning, and history monitoring. The state-of-the-art models in medical image segmentation are variants of encoder-decoder architecture, which is called U-Net. To effectively reflect the spatial features in feature maps in encoder-decoder architecture, we propose a spatially adaptive weighting scheme for medical image segmentation. Specifically, the spatial feature is estimated from the feature maps, and the learned weighting parameters are obtained from the computed map, since segmentation results are predicted from the feature map through a convolutional layer. Especially in the proposed networks, the convolutional block for extracting the feature map is replaced with the widely used convolutional frameworks: VGG, ResNet, and Bottleneck Resent structures. In addition, a bilinear up-sampling method replaces the up-convolutional layer to increase the resolution of the feature map. For the performance evaluation of the proposed architecture, we used three data sets covering different medical imaging modalities. Experimental results show that the network with the proposed self-spatial adaptive weighting block based on the ResNet framework gave the highest IoU and DICE scores in the three tasks compared to other methods. In particular, the segmentation network combining the proposed self-spatially adaptive block and ResNet framework recorded the highest 3.01% and 2.89% improvements in IoU and DICE scores, respectively, in the Nerve data set. Therefore, we believe that the proposed scheme can be a useful tool for image segmentation tasks based on the encoder-decoder architecture.


2021 ◽  
Vol 11 (4) ◽  
pp. 1431
Author(s):  
Sungsik Wang ◽  
Tae Heung Lim ◽  
Kyoungsoo Oh ◽  
Chulhun Seo ◽  
Hosung Choo

This article proposes a method for the prediction of wide range two-dimensional refractivity for synthetic aperture radar (SAR) applications, using an inverse distance weighted (IDW) interpolation of high-altitude radio refractivity data from multiple meteorological observatories. The radio refractivity is extracted from an atmospheric data set of twenty meteorological observatories around the Korean Peninsula along a given altitude. Then, from the sparse refractive data, the two-dimensional regional radio refractivity of the entire Korean Peninsula is derived using the IDW interpolation, in consideration of the curvature of the Earth. The refractivities of the four seasons in 2019 are derived at the locations of seven meteorological observatories within the Korean Peninsula, using the refractivity data from the other nineteen observatories. The atmospheric refractivities on 15 February 2019 are then evaluated across the entire Korean Peninsula, using the atmospheric data collected from the twenty meteorological observatories. We found that the proposed IDW interpolation has the lowest average, the lowest average root-mean-square error (RMSE) of ∇M (gradient of M), and more continuous results than other methods. To compare the resulting IDW refractivity interpolation for airborne SAR applications, all the propagation path losses across Pohang and Heuksando are obtained using the standard atmospheric condition of ∇M = 118 and the observation-based interpolated atmospheric conditions on 15 February 2019. On the terrain surface ranging from 90 km to 190 km, the average path losses in the standard and derived conditions are 179.7 dB and 182.1 dB, respectively. Finally, based on the air-to-ground scenario in the SAR application, two-dimensional illuminated field intensities on the terrain surface are illustrated.


2021 ◽  
pp. 089198872110235
Author(s):  
Kathryn A. Wyman-Chick ◽  
Lauren R. O’Keefe ◽  
Daniel Weintraub ◽  
Melissa J. Armstrong ◽  
Michael Rosenbloom ◽  
...  

Background: Research criteria for prodromal dementia with Lewy bodies (DLB) were published in 2020, but little is known regarding prodromal DLB in clinical settings. Methods: We identified non-demented participants without neurodegenerative disease from the National Alzheimer’s Coordinating Center Uniform Data Set who converted to DLB at a subsequent visit. Prevalence of neuropsychiatric and motor symptoms were examined up to 5 years prior to DLB diagnosis. Results: The sample included 116 participants clinically diagnosed with DLB and 348 age and sex-matched (1:3) Healthy Controls. Motor slowing was present in approximately 70% of participants 3 years prior to DLB diagnosis. In the prodromal phase, 50% of DLB participants demonstrated gait disorder, 70% had rigidity, 20% endorsed visual hallucinations, and over 50% of participants endorsed REM sleep behavior disorder. Apathy, depression, and anxiety were common prodromal neuropsychiatric symptoms. The presence of 1+ core clinical features of DLB in combination with apathy, depression, or anxiety resulted in the greatest AUC (0.815; 95% CI: 0.767, 0.865) for distinguishing HC from prodromal DLB 1 year prior to diagnosis. The presence of 2+ core clinical features was also accurate in differentiating between groups (AUC = 0.806; 95% CI: 0.756, 0.855). Conclusion: A wide range of motor, neuropsychiatric and other core clinical symptoms are common in prodromal DLB. A combination of core clinical features, neuropsychiatric symptoms and cognitive impairment can accurately differentiate DLB from normal aging prior to dementia onset.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Elena Cáceres ◽  
Rodrigo Castillo Vásquez ◽  
Alejandro Vilar López

Abstract We derive the holographic entanglement entropy functional for a generic gravitational theory whose action contains terms up to cubic order in the Riemann tensor, and in any dimension. This is the simplest case for which the so-called splitting problem manifests itself, and we explicitly show that the two common splittings present in the literature — minimal and non-minimal — produce different functionals. We apply our results to the particular examples of a boundary disk and a boundary strip in a state dual to 4- dimensional Poincaré AdS in Einsteinian Cubic Gravity, obtaining the bulk entanglement surface for both functionals and finding that causal wedge inclusion is respected for both splittings and a wide range of values of the cubic coupling.


2021 ◽  
Vol 99 (Supplement_2) ◽  
pp. 32-33
Author(s):  
Amanda Holder ◽  
Megan A Gross ◽  
Alexi Moehlenpah ◽  
Paul Beck

Abstract The objective of this study was to examine the effects of diet quality on greenhouse gas emissions and dry matter intake (DMI). We used 42 mature, gestating Angus cows (600±69 kg; and BSC 5.3±1.1) with a wide range in DMI EPD (-1.36 to 2.29). Cows were randomly assigned to 2 diet sequences forage-concentrate (FC) or concentrate-forage(CF) determined by the diet they consumed in each period (forage or concentrate). The cows were adapted to the diet and the SmartFeed individual intake units for 14 d followed by 45 d of intake data collection for each period. Body weight was recorded on consecutive weigh days at the beginning and end of each period and then once every two wk for the duration of a period. Cows were exposed to the GreenFeed Emission Monitoring (GEM) system for no less than 9 d during each period. The GEM system was used to measure emissions of carbon dioxide (CO2) and methane (CH4). Only cows with a minimum of 20 total &gt;3-m visits to the GEM were included in the data set. Data were analyzed in a crossover design using GLIMMIX in SASv.9.4. Within the CF sequence there was a significant, positive correlation between TMR DMI and CH4 (r=0.81) and TMR DMI and CO2 (r=0.69), however, gas emissions during the second period on the hay diet were not correlated with hay intake. There was a significant, positive correlation between hay DMI and CO2 (r=0.76) and hay DMI and CH4 (r=0.74) when cows first consumed forage (FC). In comparison to the CF sequence, cows on the FC sequence showed a positive correlation between CO2 and TMR DMI during the second period. There was also a significant positive correlation between hay and TMR DMI when assessed across (r=0.43) or within sequence (FC r=0.41, CF r=0.47).


1985 ◽  
Vol 16 (1) ◽  
pp. 1-10 ◽  
Author(s):  
V. P. Singh ◽  
C. Corradini ◽  
F. Melone

The geomorphological instantaneous unit hydrograph (IUH) proposed by Gupta et al. (1980) was compared with the IUH derived by commonly used time-area and Nash methods. This comparison was performed by analyzing the effective rainfall-direct runoff relationship for four large basins in Central Italy ranging in area from 934 to 4,147 km2. The Nash method was found to be the most accurate of the three methods. The geomorphological method, with only one parameter estimated in advance from the observed data, was found to be little less accurate than the Nash method which has two parameters determined from observations. Furthermore, if the geomorphological and Nash methods employed the same information represented by basin lag, then they produced similar accuracy provided the other Nash parameter, expressed by the product of peak flow and time to peak, was empirically assessed within a wide range of values. It was concluded that it was more appropriate to use the geomorphological method for ungaged basins and the Nash method for gaged basins.


2019 ◽  
Vol 867 ◽  
pp. 949-968 ◽  
Author(s):  
Sondes Khabthani ◽  
Antoine Sellier ◽  
François Feuillebois

Near-contact hydrodynamic interactions between a solid sphere and a plane porous slab are investigated in the framework of lubrication theory. The size of pores in the slab is small compared with the slab thickness so that the Darcy law holds there. The slab is thin: that is, its thickness is small compared with the sphere radius. The considered problem involves a sphere translating above the slab together with a permeation flow across the slab and a uniform pressure below. The pressure is continuous across both slab interfaces and the Saffman slip condition applies on its upper interface. An extended Reynolds-like equation is derived for the pressure in the gap between the sphere and the slab. This equation is solved numerically and the drag force on the sphere is calculated therefrom for a wide range of values of the slab interface slip length and of the permeability parameter $\unicode[STIX]{x1D6FD}=24k^{\ast }R/(e\unicode[STIX]{x1D6FF}^{2})$, where $k^{\ast }$ is the permeability, $e$ is the porous slab thickness, $R$ is the sphere radius and $\unicode[STIX]{x1D6FF}$ is the gap. Moreover, asymptotics expansions for the pressure and drag are derived for high and low $\unicode[STIX]{x1D6FD}$. These expansions, which agree with the numerics, are also handy formulae for practical use. All results match with those of other authors in particular cases. The settling trajectory of a sphere towards a porous slab in a fluid at rest is calculated from these results and, as expected, the time for reaching the slab decays for increasing slab permeability and upper interface slip length.


2009 ◽  
Vol 16-19 ◽  
pp. 1043-1047
Author(s):  
Sun Wei ◽  
Li Hua Dong ◽  
Yao Hua Dong

In the domain of manufacture and logistics, Radio Frequency Identification (RFID) holds the promise of real-time identifying, locating, tracking and monitoring physical objects without line of sight due to an enhanced efficiency, accuracy, and preciseness of object identification, and can be used for a wide range of pervasive computing applications. To achieve these goals, RFID data has to be collected, filtered, and transformed into semantic application data. However, the amount of RFID data is huge. Therefore, it requires much time to extract valuable information from RFID data for object tracing. This paper specifically explores options for modeling and utilizing RFID data set by XML-encoding for tracking queries and path oriented queries. We then propose a method which translates the queries to SQL queries. Based on the XML-encoding scheme, we devise a storage scheme to process tracking queries and path oriented queries efficiently. Finally, we realize the method by programming in a software system for manufacture and logistics laboratory. The system shows that our approach can process the tracing or path queries efficiently.


Sign in / Sign up

Export Citation Format

Share Document