Comparison of various multivariate models to estimate structural properties by means of non-destructive techniques (NDTs) in Pinus sylvestris L. timber

Holzforschung ◽  
2019 ◽  
Vol 73 (4) ◽  
pp. 331-338
Author(s):  
Antonio Villasante ◽  
Guillermo Íñiguez-González ◽  
Lluis Puigdomenech

AbstractThe predictability of modulus of elasticity (MOE), modulus of rupture (MOR) and density of 120 samples of Scots pine (Pinus sylvestrisL.) were investigated using various non-destructive variables (such as time of flight of stress wave, natural frequency of longitudinal vibration, penetration depth, pullout resistance, visual grading and concentrated knot diameter ratio), and based on multivariate algorithms, applying WEKA as machine learning software. The algorithms used were: multivariate linear regression (MLR), Gaussian, Lazy, artificial neural network (ANN), Rules and decision Tree. The models were quantified based on the root-mean-square error (RMSE) and the coefficient of determination (R2). To avoid model overfitting, the modeling was built and the results validated via the so-called 10-fold cross-validation. MLR with the “greedy method” for variable selection based on the Akaike information metric (MLRak) significantly reduced the RMSE of MOR and MOE compared to univariate linear regressions (ULR). However, this reduction was not significant for density prediction. The predictability of MLRak was not improved by any other of the tested algorithms. Specifically, non-linear models, such as multilayer perceptron, did not contribute any significant improvements over linear models. Finally, MLRak models were simplified by discarding the variables that produce the lowest RMSE increment. The resulted models could be even further simplified without significant RMSE increment.

2020 ◽  
Vol 36 (5) ◽  
Author(s):  
Felipe Augusto Reis Gonçalves ◽  
Marcelo de Paula Senoski ◽  
Thiago Picinatti Raposo ◽  
Leonardo Angelo de Aquino ◽  
Maria Elisa de Sena Fernandes

Growth measurements such as leaf area (LA) and dry matter (DM) are important in experiments about plants population, fertilization, irrigation and others parameters of cultivation, in garlic crop. The LA and DM are commonly defined as destructive, lengthy and cause loss of plants in the experimental units. The objective of this study was to fit mathematical models using linear models that estimate the leaf area and dry matter of garlic plants - variety Ito. For that, garlic plants were collected at 30, 45, 60, 75, 90, 115 and 120 days after planting. The measurements of width (W), length (L) of leaves, LA, DM, pseudostem diameter (PD), number of leaves per plant (NL) and height (H) were determined in each time. The models were fitted to estimate the LA or DM as function of the variables W, L, L*W, PD and LA. The statistical analysis of the linear regression, coefficient of determination of the linear regression (R2), root mean square error (RMSE), modified concordance index (d1) and the BIAS index were verified to determine the most representative models. It`s possible to estimate the LA and the leaf DM of garlic plants using the variables: length, width, pseudostem diameter and height of plants.


1969 ◽  
Vol 92 (3-4) ◽  
pp. 171-182
Author(s):  
Víctor H. Ramírez-Builes ◽  
Timothy G. Porch ◽  
Eric W. Harmsen

Plant leaf area is an important physiological trait, and direct, non-destructive methods for estimating leaf area have been shown to be effective while allowing for repeated plant sampling.The objective of this study was to evaluate direct, non-destructive leaflet measurements as predictors of actual leaflet area (LA), to test previously developed models, and to develop genotype-specific linear models for leaflet area estimation in common bean (Phaseolus vulgaris L.). For development of appropriate regression models for leaflet area estimation, four common bean genotypes were evaluated under greenhouse conditions: BAT 477, 'Morales', SER 16, and SER 21. The greenhouse-derived models were evaluated under field conditions. Previously developed models were tested and found to overestimate or underestimate leaflet area. Leaflet measurements included maximum leaflet width (W) and maximum leaflet length (L) and L X W. The measurements with the highest values for the coefficient of determination (R2) were W or L X W for BAT 477, SER 16, and Morales (0.97, 0.95, and 0.95, respectively), and L X W for SER 21 (R2 = 0.96). The linear models developed were shown to be effective and robust for predicting leaflet area under both greenhouse and field conditions during both vegetative and reproductive stages of plant development.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Kajal Gautam ◽  
Rishi K. Verma ◽  
Suantak Kamsonlian ◽  
Sushil Kumar

AbstractThe present study is aimed to model and optimize the electrocoagulation (EC) process with five important parameters for the decolorization of Reactive Black B (RBB) from simulated wastewater. A multivariate approach, response surface methodology (RSM) together with central composite design (CCD) is used to optimize process parameters such as pH (5–9), electrode gap (0.5–2.5 cm), current density (2.08–10.41 mA/cm2), process time (10–30 min), and initial dye concentration (100–500 mg/l). The predicted percentage decolorization of dye is obtained as 97.21% at optimized conditions: pH (6.8), gapping (1.3 cm), current density (8.32 mA/cm2), time (23 min), and initial dye concentration (200 mg/L), which is very close to experimental percent decolorization (98.41%). The statistical analysis of variance (ANOVA) is performed to evaluate the quadratic model (RSM), and shows good fit of experimental data with coefficient of determination R2 >0.93. An Artificial Neural Network (ANN) is also used to predict the percentage decolorization and gives overall 94.96% which shows performance accuracy between the predicted and actual value of decolorization. The additional considerations of operating cost and current efficiency are also taken care to show the efficacy of EC process with mathematical tool. The sludge characteristics are determined by FE-SEM/EDX.


Author(s):  
Sunil K. Deokar ◽  
Nachiket A. Gokhale ◽  
Sachin A. Mandavgane

Abstract Biomass ashes like rice husk ash (RHA), bagasse fly ash (BFA), were used for aqueous phase removal of a pesticide, diuron. Response surface methodology (RSM) and artificial neural network (ANN) were successfully applied to estimate and optimize the conditions for the maximum diuron adsorption using biomass ashes. The effect of operational parameters such as initial concentration (10–30 mg/L); contact time (0.93–16.07 h) and adsorbent dosage (20–308 mg) on adsorption were studied using central composite design (CCD) matrix. Same design was also employed to gain a training set for ANN. The maximum diuron removal of 88.95 and 99.78% was obtained at initial concentration of 15 mg/L, time of 12 h, RHA dosage of 250 mg and at initial concentration of 14 mg/L, time of 13 h, BFA dosage of 60 mg respectively. Estimation of coefficient of determination (R 2) and mean errors obtained for ANN and RSM (R 2 RHA = 0.976, R 2 BFA = 0.943) proved ANN (R 2 RHA = 0.997, R 2 BFA = 0.982) fits better. By employing RSM coupled with ANN model, the qualitative and quantitative activity relationship of experimental data was visualized in three dimensional spaces. The current approach will be instrumental in providing quick preliminary estimations in process and product development.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Supakorn Harnsoongnoen ◽  
Nuananong Jaroensuk

AbstractThe water displacement and flotation are two of the most accurate and rapid methods for grading and assessing freshness of agricultural products based on density determination. However, these techniques are still not suitable for use in agricultural inspections of products such as eggs that absorb water which can be considered intrusive or destructive and can affect the result of measurements. Here we present a novel proposal for a method of non-destructive, non-invasive, low cost, simple and real—time monitoring of the grading and freshness assessment of eggs based on density detection using machine vision and a weighing sensor. This is the first proposal that divides egg freshness into intervals through density measurements. The machine vision system was developed for the measurement of external physical characteristics (length and breadth) of eggs for evaluating their volume. The weighing system was developed for the measurement of the weight of the egg. Egg weight and volume were used to calculate density for grading and egg freshness assessment. The proposed system could measure the weight, volume and density with an accuracy of 99.88%, 98.26% and 99.02%, respectively. The results showed that the weight and freshness of eggs stored at room temperature decreased with storage time. The relationship between density and percentage of freshness was linear for the all sizes of eggs, the coefficient of determination (R2) of 0.9982, 0.9999, 0.9996, 0.9996 and 0.9994 for classified egg size classified 0, 1, 2, 3 and 4, respectively. This study shows that egg freshness can be determined through density without using water to test for water displacement or egg flotation which has future potential as a measuring system important for the poultry industry.


2020 ◽  
Vol 66 (1) ◽  
Author(s):  
Murzabyek Sarkhad ◽  
Futoshi Ishiguri ◽  
Ikumi Nezu ◽  
Bayasaa Tumenjargal ◽  
Yusuke Takahashi ◽  
...  

Abstract The quality of dimension lumber (2 by 4 lumber) was preliminarily investigated in four common Mongolian softwoods: Pinus sylvestris L., Pinus sibirica Du Tour, Picea obovata Ledeb., and Larix sibirica Ledeb. to produce high quality dimension lumber for structural use. In total 61, 39, 67, and 37 pieces of lumber were prepared for Pinus sylvestris, Pinus sibirica, Picea obovata, and L. sibirica, respectively. The lumber was visually graded and then tested in static bending to obtain the 5% lower tolerance limits at 75% confidence level (f0.05) of the modulus of elasticity (MOE) and the modulus of rupture (MOR). In addition, the effects of sawing patterns on bending properties were also analyzed. The f0.05 of the MOE and MOR were 4.75 GPa and 15.6 MPa, 3.39 GPa and 11.0 MPa, 3.78 GPa and 11.7 MPa, and 6.07 GPa and 22.3 MPa for Pinus sylvestris, Pinus sibirica, Picea obovata, and L. sibirica, respectively. These results suggested that with a few exceptions, characteristic values of MOR in the four common Mongolian softwoods resembled those in similar commercial species already used. In visual grading, over 80% of total lumber was assigned to select structural and No. 1 grades in Pinus sylvestris and Pinus sibirica, whereas approximately 40% of total lumber in L. sibirica was No. 3 and out of grades. Sawing patterns affected bending properties in Pinus sylvestris and L. sibirica, but did not affect Pinus sibirica and Picea obovata. Dynamic Young's modulus was significantly correlated with bending properties of dimension lumber for the four species. Based on the results, it was concluded that dimension lumber for structural use can be produced from the four common Mongolian softwoods.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4068
Author(s):  
Xu Huang ◽  
Mirna Wasouf ◽  
Jessada Sresakoolchai ◽  
Sakdirat Kaewunruen

Cracks typically develop in concrete due to shrinkage, loading actions, and weather conditions; and may occur anytime in its life span. Autogenous healing concrete is a type of self-healing concrete that can automatically heal cracks based on physical or chemical reactions in concrete matrix. It is imperative to investigate the healing performance that autogenous healing concrete possesses, to assess the extent of the cracking and to predict the extent of healing. In the research of self-healing concrete, testing the healing performance of concrete in a laboratory is costly, and a mass of instances may be needed to explore reliable concrete design. This study is thus the world’s first to establish six types of machine learning algorithms, which are capable of predicting the healing performance (HP) of self-healing concrete. These algorithms involve an artificial neural network (ANN), a k-nearest neighbours (kNN), a gradient boosting regression (GBR), a decision tree regression (DTR), a support vector regression (SVR) and a random forest (RF). Parameters of these algorithms are tuned utilising grid search algorithm (GSA) and genetic algorithm (GA). The prediction performance indicated by coefficient of determination (R2) and root mean square error (RMSE) measures of these algorithms are evaluated on the basis of 1417 data sets from the open literature. The results show that GSA-GBR performs higher prediction performance (R2GSA-GBR = 0.958) and stronger robustness (RMSEGSA-GBR = 0.202) than the other five types of algorithms employed to predict the healing performance of autogenous healing concrete. Therefore, reliable prediction accuracy of the healing performance and efficient assistance on the design of autogenous healing concrete can be achieved.


2021 ◽  
Vol 11 (13) ◽  
pp. 6030
Author(s):  
Daljeet Singh ◽  
Antonella B. Francavilla ◽  
Simona Mancini ◽  
Claudio Guarnaccia

A vehicular road traffic noise prediction methodology based on machine learning techniques has been presented. The road traffic parameters that have been considered are traffic volume, percentage of heavy vehicles, honking occurrences and the equivalent continuous sound pressure level. Leq A method to include the honking effect in the traffic noise prediction has been illustrated. The techniques that have been used for the prediction of traffic noise are decision trees, random forests, generalized linear models and artificial neural networks. The results obtained by using these methods have been compared on the basis of mean square error, correlation coefficient, coefficient of determination and accuracy. It has been observed that honking is an important parameter and contributes to the overall traffic noise, especially in congested Indian road traffic conditions. The effects of honking noise on the human health cannot be ignored and it should be included as a parameter in the future traffic noise prediction models.


2020 ◽  
Vol 70 (3) ◽  
pp. 370-377
Author(s):  
Cristian Grecca Turkot ◽  
Roy Daniel Seale ◽  
Edward D. Entsminger ◽  
Frederico José Nistal França ◽  
Rubin Shmulsky

Abstract The objective of this article is to evaluate the relationship between the dynamic modulus of elasticity (MOEd), which was obtained with acoustic-based nondestructive testing (NDT) methods, and static bending properties of two domestic hardwood oak species. The mechanical properties were conducted using static modulus of elasticity (MOE) and modulus of rupture (MOR) in radial and tangential directions. Mechanical tests were performed according to ASTM D143 on small clear, defect-free specimens from the two tree species: red oak (Quercus rubra) and white oak (Quercus alba). The MOEd was determined by two NDT methods and three longitudinal vibration methods based on the fast Fourier transform. The destructive strength values obtained in this study were within the expected range for these species. The MOE was best predicted by NDT methods for both species but also had a strong capability to predict MOR.


2017 ◽  
Vol 47 (4) ◽  
Author(s):  
Felipe Amorim Caetano Souza ◽  
Tales Jesus Fernandes ◽  
Raquel Silva de Moura ◽  
Sarah Laguna Conceição Meirelles ◽  
Rafaela Aparecida Ribeiro ◽  
...  

ABSTRACT: The analysis of the growth and development of various species has been done using the growth curves of the specific animal based on non-linear models. The objective of the current study was to evaluate the fit of the Brody, Gompertz, Logistic and von Bertalanffy models to the cross-sectional data of the live weight of the MangalargaMarchador horses to identify the best model and make accurate predictions regarding the growth and maturity in the males and females of this breed. The study involved recording the weight of 214 horses, of which 94 were males and 120 were non-pregnant females, between 6 and 153 months of age. The parameters of the model were estimated by employing the method of least squares, using the iteratively regularized Gauss-Newton method and the R software package. Comparison of the models was done based on the following criteria: coefficient of determination (R²); Residual Standard Deviation (RSD); corrected Akaike Information Criterion (AICc). The estimated weight of the adult horses by the models ranged between 431kg and 439kg for males and between 416kg and 420kg for females. The growth curves were studied using the cross-sectional data collection method. For males the von Bertalanffymodel was found to be the most effective in expressing growth, while in females the Brody model was more suitable. The MangalargaMarchador females achieve adult body weight earlier than the males.


Sign in / Sign up

Export Citation Format

Share Document