scholarly journals Dynamic vapour sorption protocols for the quantification of accessible hydroxyl groups in wood

Holzforschung ◽  
2020 ◽  
Vol 74 (4) ◽  
pp. 412-419 ◽  
Author(s):  
Tuuli Uimonen ◽  
Saara Hautamäki ◽  
Michael Altgen ◽  
Maija Kymäläinen ◽  
Lauri Rautkari

AbstractThis study investigated several key parameters of deuterium exchange measurements in a dynamic vapour sorption apparatus to optimise the measurement protocol for hydroxyl (OH) group accessibility determination. The impact of changing the sample mass, the deuterium oxide (D2O) vapour exposure time and the rate of change in moisture content (dm dt−1) during the drying steps on the measured OH group accessibility were analysed. A sample mass of more than 10 mg, an exposure to D2O vapour of at least 10 h and a dm dt−1 of 0.0005% min−1 over a 10-min period during the drying steps gave the most reliable results. We also investigated the necessity of adding a method stage that eliminates the effect of inclusion compounds (ICs). The addition of an initial drying and wetting stage enabled the release of entrapped solvents.

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Camille Merienne ◽  
Chloe Marchand ◽  
Samira Filali ◽  
Damien Salmon ◽  
Christine Pivot ◽  
...  

AbstractBackgroundStability of low amoxicillin oral dosage form (5 mg) used in reintroduction drug test was not fully documented. Furthermore, the impact of (1) salt moiety of amoxicillin and (2) amoxicillin – excipient interactions upon the antibiotic formulation stability during the storage was not characterized so that the estimation of the pharmaceutical expiration date from shelf-life was uncertain. Thus, the main goal of this study was to estimate the shelf-life of two formulations of amoxicillin, using a semi-predictive methodology.MethodsAmoxicillin sodium (AS) and amoxicillin trihydrate (ATH), corresponding to 5-mg amoxicillin, were compounded with microcrystalline cellulose (MCC) in oral hard capsules which were, then, submitted to four environmental conditions (25 °C / 60% or 80% relative humidity (RH); 40 °C / 75% RH; 60 °C / 5% RH) in climatic chambers for 45 and 84 days. Therefore, the characterization of amoxicillin-MCC mixture was assessed by attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-FTIR) The profiles of amoxicillin content (determined by stability indicating chromatographic method) as a function of storage time, temperature and RH were fitted to pre-defined kinetic models performed by accelerated predictive stability (APS).ResultsATR-FTIR analysis of AS, ATH, MCC and bulk specimens stored in heated and humid atmosphere confirmed water sorption to cellulose described by a broad and unresolved 3600 to 3000 cm−1 band associated with (1) general intramolecular and intermolecular hydrogen bonding between water and hydroxyl groups of the cellulose, and with (2) free hydroxyl in cellulose. Moreover, a dramatic decrease of absorption at 1776 and 1687 cm−1 respectively characteristic of the β-lactam ring (νC=O) and amide group (νC=O), was revealed as a consequence of AS and ATH degradation caused by moisturization of bulk. Amoxicillin degradation was established by chromatographic analysis showing faster AS degradation than ATH throughout time exposure. The combined effects of temperature – RH were successfully modeled by APS, where AS and ATH showed accelerated (auto-catalysis degradation mechanism) and linear degradation, respectively. The faster AS degradation was assumed to be linked to lower hydrogen donor to hydrogen acceptor count ratio and polar surface than ATH, increasing the probability of AS hydrolysis by water adsorption to AS-MCC solid dispersion (e.g., by reduction of protective intramolecular hydrogen bonds between AS molecules). Furthermore, the compounding which involved a drastic homogenization of solids may have affected the crystalline degree of MCC with an increase of amorphous phase more sensitive to water adsorption.ConclusionsThe improvement of amoxicillin compounding for oral dose forms might be rationalized by taking into account the molecular descriptors of salt moiety and excipients, improved by the choice of an appropriate process of production, characterized from infrared vibrational spectroscopy and chromatographic analysis and finally predicted from accelerated stability assays.


Gerontology ◽  
2021 ◽  
pp. 1-14
Author(s):  
Ahmed Ghachem ◽  
Frédérik Dufour ◽  
Tamas Fülöp ◽  
Pierrette Gaudreau ◽  
Alan A. Cohen

<b><i>Background:</i></b> Age-related changes in biological processes such as physiological dysregulation (the progressive loss of homeostatic capacity) vary considerably among older adults and may influence health profiles in late life. These differences could be related, at least in part, to the impact of intrinsic and extrinsic factors such as sex and physical activity level (PAL). <b><i>Objectives:</i></b> The objectives of this study were (1) to assess the magnitude and rate of changes in physiologi­cal dysregulation in men and women according to PAL and (2) to determine whether/how sex and PAL mediate the apparent influence of physiological dysregulation on health outcomes (frailty and mortality). <b><i>Methods:</i></b> We used data on 1,754 community-dwelling older adults (age = 74.4 ± 4.2 years; women = 52.4%) of the Quebec NuAge cohort study. Physiological dysregulation was calculated based on Mahalanobis distance of 31 biomarkers regrouped into 5 systems: oxygen transport, liver/kidney function, leukopoiesis, micronutrients, and lipids. <b><i>Results:</i></b> As expected, mean physiological dysregulation significantly increased with age while PAL decreased. For the same age and PAL, men showed higher levels of physiological dysregulation globally in 3 systems: oxygen transport, liver/kidney function, and leukopoiesis. Men also showed faster global physiological dysregulation in the liver/kidney and leukopoiesis systems. Overall, high PAL was associated with lower level and slower rate of change of physiological dysregulation. Finally, while mortality and frailty risk significantly increased with physiological dysregulation, there was no evidence for differences in these effects between sexes and PAL. <b><i>Conclusion:</i></b> Our results showed that both sex and PAL have a significant effect on physiological dysregulation levels and rates of change. Also, although a higher PAL was associated with lower level and slower rate of change of physiological dysregulation, there was no evidence that PAL attenuates the effect of physiological dysregulation on subsequent declines in health at the end of life. Substantial work remains to understand how modifiable behaviors impact the relationship between physiological dysregulation, frailty, and mortality in men and women.


2021 ◽  
Vol 121 (4) ◽  
pp. 1207-1218
Author(s):  
Josh T. Arnold ◽  
Stephen J. Bailey ◽  
Simon G. Hodder ◽  
Naoto Fujii ◽  
Alex B. Lloyd

Abstract Purpose This study assessed the impact of normobaric hypoxia and acute nitrate ingestion on shivering thermogenesis, cutaneous vascular control, and thermometrics in response to cold stress. Method Eleven male volunteers underwent passive cooling at 10 °C air temperature across four conditions: (1) normoxia with placebo ingestion, (2) hypoxia (0.130 FiO2) with placebo ingestion, (3) normoxia with 13 mmol nitrate ingestion, and (4) hypoxia with nitrate ingestion. Physiological metrics were assessed as a rate of change over 45 min to determine heat loss, and at the point of shivering onset to determine the thermogenic thermoeffector threshold. Result Independently, hypoxia expedited shivering onset time (p = 0.05) due to a faster cooling rate as opposed to a change in central thermoeffector thresholds. Specifically, compared to normoxia, hypoxia increased skin blood flow (p = 0.02), leading to an increased core-cooling rate (p = 0.04) and delta change in rectal temperature (p = 0.03) over 45 min, yet the same rectal temperature at shivering onset (p = 0.9). Independently, nitrate ingestion delayed shivering onset time (p = 0.01), mediated by a change in central thermoeffector thresholds, independent of changes in peripheral heat exchange. Specifically, compared to placebo ingestion, no difference was observed in skin blood flow (p = 0.5), core-cooling rate (p = 0.5), or delta change in rectal temperature (p = 0.7) over 45 min, while nitrate reduced rectal temperature at shivering onset (p = 0.04). No interaction was observed between hypoxia and nitrate ingestion. Conclusion These data improve our understanding of how hypoxia and nitric oxide modulate cold thermoregulation.


2021 ◽  
Vol 13 (13) ◽  
pp. 2442
Author(s):  
Jichao Lv ◽  
Rui Zhang ◽  
Jinsheng Tu ◽  
Mingjie Liao ◽  
Jiatai Pang ◽  
...  

There are two problems with using global navigation satellite system-interferometric reflectometry (GNSS-IR) to retrieve the soil moisture content (SMC) from single-satellite data: the difference between the reflection regions, and the difficulty in circumventing the impact of seasonal vegetation growth on reflected microwave signals. This study presents a multivariate adaptive regression spline (MARS) SMC retrieval model based on integrated multi-satellite data on the impact of the vegetation moisture content (VMC). The normalized microwave reflection index (NMRI) calculated with the multipath effect is mapped to the normalized difference vegetation index (NDVI) to estimate and eliminate the impact of VMC. A MARS model for retrieving the SMC from multi-satellite data is established based on the phase shift. To examine its reliability, the MARS model was compared with a multiple linear regression (MLR) model, a backpropagation neural network (BPNN) model, and a support vector regression (SVR) model in terms of the retrieval accuracy with time-series observation data collected at a typical station. The MARS model proposed in this study effectively retrieved the SMC, with a correlation coefficient (R2) of 0.916 and a root-mean-square error (RMSE) of 0.021 cm3/cm3. The elimination of the vegetation impact led to 3.7%, 13.9%, 11.7%, and 16.6% increases in R2 and 31.3%, 79.7%, 49.0%, and 90.5% decreases in the RMSE for the SMC retrieved by the MLR, BPNN, SVR, and MARS model, respectively. The results demonstrated the feasibility of correcting the vegetation changes based on the multipath effect and the reliability of the MARS model in retrieving the SMC.


2021 ◽  
Vol 65 (1) ◽  
pp. 23-30
Author(s):  
Tiago Costa ◽  
Neslihan Akdeniz

HighlightsDesign characteristics for animal mortality compost cover materials were tested.Compressive stress was applied to simulate the effects of the mortalities on cover materials.The highest permeability was measured for sawdust at 25% moisture content.A linear relationship was found between the volumetric flow rate and the power required to aerate the piles.Abstract. Composting is an aerobic process that relies on natural aeration to maintain proper oxygen levels. Air-filled porosity, mechanical strength, and permeability are among the essential parameters used to optimize the process. This study’s objective was to measure the physical parameters and airflow characteristics of three commonly used cover materials at four moisture levels, which could be used in designing actively aerated swine mortality composting systems. A laboratory-scale experiment was conducted to measure pressure drops across the cover materials as a function of the airflow rate and the material’s moisture content. Compressive stress was applied for 48 h to simulate the impact of swine mortalities on the cover materials. The power required to aerate each material was determined as a function of volumetric flow rate and moisture content. As expected, air-filled porosity and permeability decreased with increasing bulk density and moisture content. The highest average permeability values were measured at 25% moisture content and ranged from 66 × 10-4 to 70 × 10-4 mm2, from 161 × 10-4 to 209 × 10-4 mm2, and from 481 × 10-4 to 586 × 10-4 mm2 for woodchips, ground cornstalks, and sawdust, respectively. For the range of airflow rates tested in this study (0.0025 to 0.0050 m3 s-1 m-2), a linear relationship (R2 = 0.975) was found between the volumetric flow rate (m3 s-1) and the power required to aerate the compost pile (W per 100 kg of swine mortality). Keywords: Airflow, Darcy’s law, Livestock, Modeling, Permeability, Pressure drop.


2001 ◽  
Vol 43 (2) ◽  
pp. 291-295 ◽  
Author(s):  
J. Vouillamoz ◽  
M. W. Milke

The effect of compost on phytoremediation of diesel-contaminated soils was investigated using 130 small (200 g) containers in two screening tests. The experiments were conducted in a controlled environment using ryegrass from seed. Containers were destructively sampled at various times and analyzed for plant mass and total petroleum hydrocarbons. The results indicate that the presence of diesel reduces grass growth, and that compost helps reduced the impact of diesel on grass growth. The addition of compost helps increase diesel loss from the soils both with and without grass, though the addition of grass leads to lower diesel levels compared with controls. A second set of experiments indicates that the compost helps in phytoremediation of diesel-contaminated soil independent of the dilution effect that compost addition has. The results indicate that the compost addition allowed diesel loss down to 200 mg TPH/kg even though the compost would be expected to hold the diesel more tightly in the soil/compost mixture. The simplicity of the screening tests led to difficulties in controlling moisture content and germination rates. The conclusion of the research is that the tilling of compost into soils combined with grass seeding appears to be a valuable option for treating petroleum-contaminated soils.


Abacus ◽  
2002 ◽  
Vol 38 (2) ◽  
pp. 177-199 ◽  
Author(s):  
Vivien Beattie ◽  
Michael John Jones
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document