scholarly journals Organosolv pulping of olive tree trimmings by use of ethylene glycol/soda/water mixtures

Holzforschung ◽  
2004 ◽  
Vol 58 (2) ◽  
pp. 122-128 ◽  
Author(s):  
L. Jiménez ◽  
A. Rodríguez ◽  
M. J. Díaz ◽  
F. López ◽  
J. Ariza

Abstract This paper reports on the influence of independent variables in the ethylene glycol/soda pulping of olive wood trimmings (165–195°C, 30–90 min, ethylene glycol concentration 5–15%, soda concentration 2.5–7.5% and liquid/solid ratio 4–6), on the yield and Kappa index of the pulps and the strength properties (breaking length, burst index and tear index) of paper sheets. By using a central composite factorial design, equations that relate each dependent variable to the different independent variables were obtained which reproduced the experimental results for the dependent variables with errors less than 12%. Using a temperature of 184°C, ethylene glycol and soda concentrations of 15% and 7%, respectively, a liquid/solid ratio of 5:1 and a cooking time of 30 min results in yield, Kappa index, breaking length, burst index and tear index values that depart by 14.3%, 8.2%, 17.1%, 17.0% and 2.3%, respectively, from their optimum levels. These conditions result in substantial savings in power consumption and immobilised capital investments as they involve a lower temperature, a lower liquid/solid ratio, and a shorter time than the maximum values tested.

TAPPI Journal ◽  
2019 ◽  
Vol 18 (7) ◽  
pp. 431-440
Author(s):  
SHUBHANG BHARDWAJ ◽  
NISHI KANT BHARDWAJ ◽  
YUVRAJ SINGH NEGI

Two biopolymers, chitosan and oxidized starch, were used as wet-end additives to improve the strength properties of the paper because of their biodegradable and non-hazardous qualities. The present study reports the improvement in surface and strength properties of packaging-grade paper made with rice straw pulp using biopolymers, chitosan, oxidized starch, and surface sizing added at the wet end of the paper machine. Use of chitosan at all doses from 0.5 to 10 kg/ton enhanced important surface and strength properties of paper. The breaking length, tear index, burst index, ring crush strength, stretch, tensile energy absorption index, and Taber stiffness of the paper with 10 kg/ton of chitosan as a wet-end additive showed 22%, 14%, 20%, 59%, 16%, 44%, and 48% improvement, respectively, in comparison to control, (i.e, without its addition). The Cobb60 was also reduced by 45%, showing better resistance to water in comparison to rice straw paper alone. The effects of chitosan added at the wet end on the paper surface were investigated using Fourier transform infrared spectroscopy (FTIR). The use of 10 kg/ton of chitosan at the wet end reduced the color and total suspended solids in the back water of the papermaking system by 55% and 51%, respectively. Further enhancement in the surface and strength properties of paper was observed following surface sizing with oxidized starch.


2021 ◽  
Author(s):  
Thabisile Brightwell Jele ◽  
Prabashni Lekha ◽  
Bruce Sithole

Abstract The pursuit for sustainability in the papermaking industry calls for the elimination or reduction of synthetic additives and the exploration of renewable and biodegradable alternatives. Cellulose nanofibrils (CNFs), due to their inherent morphological and biochemical properties, are an excellent alternative to synthetic additives. These properties enable CNFs to improve the mechanical, functional and barrier properties of different types of paper. The nanosize diameter, micrometre length, semi-crystalline structure, high strength and modulus of CNFs has a direct influence on the mechanical properties of paper such as tensile index, burst index, Scott index, breaking length, tear index, Z-strength, E-modulus, strain at break, and tensile stiffness. This review details the role played by CNFs as an additive to improve strength properties of papers and the factors affecting the improvement in paper quality when CNFs are added as additives. The paper also includes techno-economic aspects of the process and identifies areas that need further research.


2021 ◽  
Vol 12 (1) ◽  
pp. 230-242
Author(s):  
Henry Okwudili Chibudike ◽  
Nelly Acha Ndukwe ◽  
Eunice Chinedum Chibudike ◽  
Nkemdilim Ifeanyi Obi ◽  
Olubamike Adetutu Adeyoju

Pulping trials were carried out using MEA and the soda process comparing their pulping potentials. The operating conditions such as the concentration of the cooking liquor (50%, 75%, 100%) for MEA and (10%, 15%, 20%) for NaOH, the maximum cooking temperature (150oC, 160oC, 170oC) and cooking time (60, 90, 120minutes) for both processes were investigated systematically to establish optimal pulping conditions. The agro-biomass used in this investigation is Sugarcane Bagasse viewed as alternative raw material for pulp and paper production. The lignin content of Bagasse (19.5%) was low; indicating that Bagasse should be easier to pulp. The optimum cooking conditions (independent variables) for MEA pulping were 75% MEA concentration, 150oC cooking temperature and 90 minutes cooking time. Excel 2013 was used to analyze the effect of independent variables on yield of bagasse pulp and properties of furnished paper from MEA process in comparison with the Soda process which include tear index, tensile index, burst index and folding endurance with errors less than 15% in all cases. The Kappa number range (12.7-16.9), viscosity (270-870 ml/g) and brightness (62.1-93.2%) of bagasse pulp are appropriate for high-brightness printing and writing papers. The physical properties of furnished paper, tear index (13.4 mN.m2/g), tensile index (71Nm/g), Burst index (4.8 KN/g) and folding endurance (82) recommend the cellulosic pulp from Sugarcane Bagasse obtained from the MEA process for strengthening the virgin fiber in recycled papers and also for developing certain types of printing and packaging papers. Due to the awareness towards the negative impact of kraft mill’s effluent to the environment recently, soda pulping started to regain its popularity among the pulp mills especially non-wood based pulp mills. MEA process is more economically attractive given its high pulp yield, despite the significant increase in chemical demand for bleaching. MEA pulping is a good alternative to soda pulping furnishing high pulp yield with less cooking temperature, i.e. 150oC, thereby saving a considerable amount of energy with less odoriferous pollutants and pollution load associated with the soda process.


2013 ◽  
Vol 690-693 ◽  
pp. 1101-1104
Author(s):  
Lin Qu ◽  
Jia Chuan Chen ◽  
Gui Hua Yang

The refining is the important stage in the APMP pulping process, and high temperature pulses generated in this stage make pulp fibers stiff and ankylosis, which can reduce the strength properties of the pulp. Latency removal is the best way to modify pulp fibers properties and improve their strength. This study focused on the effect of latency removal on the properties of the poplar APMP pulp. atency removal can improve effectively the physical properties of the APMP pulp,the breaking length of the latency removal pulp increased 3.06%, burst index increased 1.97%, tear index decreased 6.07%, and brightness increased by 0.38%ISO.in the 60°C. the breaking length of the latency removal pulp increased 11.80%, burst index increased 14.30%, tear index decreased 6.63%, and brightness increased by 0.77%ISO in the 80°C.


Biotecnia ◽  
2021 ◽  
Vol 23 (1) ◽  
pp. 141-150
Author(s):  
Citlali Colin Chavez ◽  
Herlinda Soto Valdez ◽  
Armida Rodríguez Féliz ◽  
Elizabeth Peralta ◽  
Ama Rosa Saucedo Corona ◽  
...  

The papermaking potential of Opuntia ficus-indica (OFI) waste fibers was studied in this research. Alpha cellulose, lignin, hollocellulose, ethanol/benzene extractives and ash content were determined as 53.7±0.1%, 2.4±0.3%, 61.6±5.7%, 7.1±0.3% and 26.4±0.1%, respectively. The average fiber length, width, lumen and cell wall thickenss were found to be 1.1±0.3 mm, 18.8±6.1µm, 12.1±5.4 µm, 4.3±1.0 µm. Soda pulping was conducted using 20 and 28% sodium hydroxide, cooking temperatures of 160 and 175 °C, cooking times of 60 and 120 min, and liquor- to fiber ratio of 9:1. Soda pulping with 28% sodium hydroxide, 175 °C and 120 min showed a lower Kappa number of 29.60±1.7 and a total yield of 32.2±1.6 %. In general, tensile strength index (36.0±5.0 Nm/g), stretch (1.7±0.3%), breaking length (3.7±0.5 km), burst index (3.2±0.4 KPa.m2/g), tear index (7.3±0.0 mN.m2/g), folding endurance (166 times) and porosity (> 120 s) of OFI pulp were comparable with wood and non-wood pulps.


TAPPI Journal ◽  
2016 ◽  
Vol 15 (10) ◽  
pp. 631-639
Author(s):  
MOHAMMAD HADI ARYAIE MONFARED ◽  
HOSSEIN RESALATI ◽  
ALI GHASEMIAN ◽  
MARTIN A. HUBBE

This study investigated the addition of acrylic fiber to old corrugated container (OCC) pulp as a possible means of overcoming adverse effects of water-based pressure sensitive adhesives during manufacture of paper or paperboard. Such adhesives can constitute a main source of stickies, which hurt the efficiency of the papermaking process and make tacky spots in the product. The highest amount of acrylic fiber added to recycled pulps generally resulted in a 77% reduction in accepted pulp microstickies. The addition of acrylic fibers also increased pulp freeness, tear index, burst strength, and breaking length, though there was a reduction in screen yield. Hence, in addition to controlling the adverse effects of stickies, the addition of acrylic fibers resulted in the improvement of the mechanical properties of paper compared with a control sample.


2011 ◽  
Vol 396-398 ◽  
pp. 292-296
Author(s):  
Ai Shi Zhu

Ultrasonic technology was applied to polysaccharides extraction from Ottelia acuminata (Gagnep.) Dandy and Response Surface Methodology (RSM) was used to optimize the effects of processing parameters on polysaccharides yields. Three independent variables such as liquid-solid ratio (ml/g, X1), extraction temperature (°C, X2) and extraction time (hour, X3) were investigated respectively. The statistical analysis indicated that the three variables and the quadratic of X1 and X3 had significant effects on the yields and followed by the significant interaction effects between the variables of X1 and X3, X2 and X3 (p<0.05). A mathematical model with high determination coefficient was gained. The optimal extraction conditions of polysaccharides were determined as follows: liquid-solid ratio 43 ml/g, extraction temperature 90 °C and extraction time 3.45 hours. Under these conditions, the experimental yield of polysaccharides was 107.44 mg/g, which was agreed closely with the predicted value 108.71 mg/g.


BioResources ◽  
2010 ◽  
Vol 6 (1) ◽  
pp. 447-463 ◽  
Author(s):  
Puneet Pathak ◽  
Nishi K. Bhardwaj ◽  
Ajay K. Singh

The utilization of post-consumer papers in the production of new paper products is increasing all over the world in recent years. Recycling of photocopier paper is a major problem due to difficulty in removal of non-impact ink. Enzymes offer potential advantages in ecofriendly deinking of recovered paper. In this study the deinking of photocopier paper was examined using chemicals and a commercial cellulase enzyme. Parameters of deinking experiments were optimized for hydrapulping. The ink was removed by flotation and washing processes. Then these parameters were compared in terms of ink removal ability of the process, as well as optical and strength properties of the deinked paper. The application of enzymatic deinking improved ink removal efficiency by 24.6% and freeness by 21.6% with a reduction in drainage time of 11.5% in comparison to those obtained with chemical deinking. The physical properties, namely burst index and tensile index, were observed to improve by 15.3% and 2.7%, respectively and brightness and tear index decreased by 2.1% and 21.9%, respectively. Results of deinking efficiency of photocopier paper showed that the enzyme used in the present work performed better than the conventional chemicals used for deinking.


Holzforschung ◽  
2014 ◽  
Vol 68 (8) ◽  
pp. 861-866 ◽  
Author(s):  
Per Tomas Larsson ◽  
Lennart Salmén

Abstract The industrially produced chemical pulps have lower strength properties than those obtained under laboratory conditions, and this difference is referred to as the strength delivery (SD) problem. In this study, the hypothesis was put forward that the SD could, at least in part, be accounted for by the supramolecular structure of the cellulose microfibrils of the fiber wall. To test the hypothesis, two bleached softwood kraft pulps (BSKP) were manufactured from the same starting material with different degrees of cellulose aggregation, but the pulps were otherwise as similar as possible in other controllable respects. The chemical and physical properties, including the pulp strength, were tested. A selective increase of the degree of cellulose microfibril aggregation resulted in a pulp with a decreased tear index (TI) at a specified tensile index, and this decrease was similar in magnitude to what is typically encountered in SD. Accordingly, the current experimental study succeeded in mimicking the SD problem. The lateral fibril aggregate dimensions (LFAD) seem to play a pivotal role and it can be safely concluded in general that the supramolecular structure of cellulose in the fibers may be an important factor contributing to the SD problem.


Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5002
Author(s):  
Muhammad Umair ◽  
Norhafiz Azis ◽  
Rasmina Halis ◽  
Jasronita Jasni

This paper presents an investigation on the physio-mechanical properties and AC breakdown voltage of the Kenaf paper in the presence of Polyvinyl Alcohol (PVA) for transformers application. Kenaf bast fibers were used in order to produce the paper through the soda pulping process. The pulps were subjected to beating up to 12,000 revolutions, whereby the PVA was added to the pulps at a different weight percentage concentration up to 12%. Morphological study was carried out on the Kenaf paper based on Scanning Electron Microscopy (SEM). The apparent density, Tensile Index (TI), Burst Index (BI), Tear Index (TeI), and AC breakdown voltage of the Kenaf paper were measured. It is found that the TI and BI of Kenaf paper can be slightly improved through the introduction of PVA. On other hand, the TeI of the Kenaf paper decreases with the increment of the PVA. The AC breakdown voltage of the Kenaf paper slightly increases with the increment of PVA weight percentage concentration.


Sign in / Sign up

Export Citation Format

Share Document