Thermal forming of chemically modified wood to make high-performance plastic-like wood composites

Holzforschung ◽  
2004 ◽  
Vol 58 (5) ◽  
pp. 519-528 ◽  
Author(s):  
Maria Cristina Timar ◽  
Kevin Maher ◽  
Mark Irle ◽  
Maria Daniela Mihai

Abstract Chemically modified wood composites were obtained via the compression moulding of thermoplasticised Aspen (Populus tremula) sawdust. This sawdust was previously prepared by esterification with maleic anhydride (MA) and subsequent oligoesterification with maleic anhydride and glycidyl methacrylate (GMA). The thermoplastic properties of the chemically modified wood resulting from different modification procedures were confirmed and compared by compression-moulding experiments leading to preliminary and final products. An SEM study of the resulting products clearly showed that the oligoesterified wood had partially melted under pressure and temperature, such that the overlapping and surface melting of particles ensured adhesive bonding between those particles. A new type of wood/thermoplastic-wood composite was obtained. In these composites, the melted part of the modified wood plays the role of the cohesive matrix whilst none-melted wood remains as a fibrous reinforcing material. FTIR spectra suggested that changes in the chemical structure of the modified wood are possible during the thermal forming process (e.g. polymerisation of C=C double bonds). The final composites were yellowish-brown, glossy, plastic-like products that showed interesting physical, mechanical and biological properties. They are water-resistant and dimensionally stable and display good electrical insulating behaviour. Their mechanical properties (bending strength of ca. 64 MPa and tensile strength of ca. 36 MPa) are in the typical range for plastics and conventional wood-fibre/plastic composites, and are superior to common wood products such as fibreboards and particleboards. Furthermore, the outstandingly high internal bond (ca. 3.0 MPa) highlights the totally different adhesion mechanism operating in these new types of composites. Although the novel composites are much more resistant to decay than the original unmodified wood, they remain ultimately biodegradable plastic-like composites.

2019 ◽  
Vol 800 ◽  
pp. 240-245
Author(s):  
Andis Antons ◽  
Dace Cīrule ◽  
Ingeborga Andersone ◽  
Anrijs Verovkins ◽  
Edgars Kuka

Despite intensive research in wood protection, no simple wood treatment method is available for satisfactory wood protection that could ensure appropriate strength and bio-resistance of wood products during their service life. The present study is a part of a project that is aimed to improve wood service properties by combining wood thermal treatment and impregnation with copper containing preservatives. The objective of the present study was to investigate the effect of conventional modifications (thermal modification at relatively mild temperature range (150 - 180°C) and impregnation) and double-treatments (impregnation after thermal treatment and vice versa) on the bending properties of birch (Betula spp.) and pine (Pinussylvestris L.) wood. Bending strength considerably decreased after thermal modification of wood, however MOE values generally did not significantly change. Moreover, impregnation had no effect on the bending properties for both unmodified and thermally modified wood specimens. For double-treatment in which impregnation was carried out before thermal modification no changes in bending strength were observed comparing to thermally modified wood. However, MOE values of these specimens were 10 % for birch and 19 % for pine smaller comparing to just thermally modified wood. The results of double-treatment tests imply that, regarding wood bending properties, wood impregnation after thermal modification is more appropriate.


Forests ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 546
Author(s):  
Charles R. Frihart ◽  
Rishawn Brandon ◽  
Rebecca E. Ibach ◽  
Christopher G. Hunt ◽  
Wolfgang Gindl-Altmutter

Determining adhesive bond performance for chemically modified wood is important not only for its commercial utility but also for understanding wood bond durability. Bulking modifications occupy space inside the cell wall, limiting the space available for water. We used two bulking modifications on yellow poplar (Liriodendron tulipifera L.): acetylation (Ac), which bulks and converts a wood hydroxyl group to an ester, while butylene oxide (BO) also bulks the wood but preserves a hydroxyl group. Both result in lower water uptake; however, the loss of the hydroxyl group with Ac reduces the wood’s ability to form hydrogen and other polar bonds with the adhesives. On the other hand, the BO reaction replaces a hydroxyl group with another one along a hydrocarbon chain; thus, this product may not be harder to bond than the unmodified wood. We investigated how these chemical modifications of wood affect bond performance with four adhesives: resorcinol-formaldehyde (RF), melamine-formaldehyde (MF), emulsion polymer isocyanate (EPI), and epoxy. The ASTM D 905 bond shear strength for both dry and wet samples showed that the BO results were quite similar to the unmodified wood, but the MF and EPI performed poorly on Ac-modified wood, in contrast to the results with RF and epoxy.


Coatings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 253
Author(s):  
Ruslan Rushanovich Safin ◽  
Aigul Ravilevna Shaikhutdinova ◽  
Ruslan Khasanshin ◽  
Shamil Mukhametzyanov ◽  
Albina Safina

This work is devoted to the study of the effect of ultraviolet rays for the surface activation of pine wood thermally modified at temperatures of 180−240 °C in order to increase the surface roughness, enhance the wettability of thermal wood and the adhesive strength of the glue in the production of wood block furniture panels. Studies were carried out to measure the contact angle of wettability of thermally modified wood samples of pine, as a result of which it was determined that the ultraviolet treatment process contributes to an increase in the adhesion properties of the surface layer of thermally modified wood by more than 13% due to the reactivity of ultraviolet rays to oxidize and degrade ligno-containing wood products. At the same time, the most active process of surface activation takes place during 60 min of ultraviolet irradiation of wood with a total irradiation of at least 125 W/cm2. It was revealed that the combined effect of two-stage wood processing, including preliminary volumetric thermal modification followed by surface ultraviolet treatment, causes an increase in the moisture resistance of glued wood products by 24%. So, if the strength of the glue seam when gluing natural wood samples after boiling decreased by 46%, then the samples that underwent two-stage processing showed a decrease only by 22%. In connection with the results obtained, an improved technology for the production of furniture boards for the manufacture of moisture-resistant wood products is proposed.


Holzforschung ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Lukas Emmerich ◽  
Maja Bleckmann ◽  
Sarah Strohbusch ◽  
Christian Brischke ◽  
Susanne Bollmus ◽  
...  

Abstract Chemical wood modification has been used to modify wood and improve its decay resistance. However, the mode of protective action is still not fully understood. Occasionally, outdoor products made from chemically modified timber (CMT) show internal decay while their outer shell remains intact. Hence, it was hypothesized that wood decay fungi may grow through CMT without losing their capability to degrade non-modified wood. This study aimed at developing a laboratory test set-up to investigate (1) whether decay fungi grow through CMT and (2) retain their ability to degrade non-modified wood. Acetylated and 1,3-dimethylol-4,5-dihydroxyethyleneurea (DMDHEU) treated wood were used in decay tests with modified ‘mantle specimens’ and untreated ‘core dowels’. It became evident that white rot (Trametes versicolor), brown rot (Coniophora puteana) and soft rot fungi can grow through CMT without losing their ability to degrade untreated wood. Consequently, full volume impregnation of wood with the modifying agent is required to achieve complete protection of wooden products. In decay tests with DMDHEU treated specimens, significant amounts of apparently non-fixated DMDHEU were translocated from modified mantle specimens to untreated wood cores. A diffusion-driven transport of nitrogen and DMDHEU seemed to be responsible for mass translocation during decay testing.


Holzforschung ◽  
2015 ◽  
Vol 69 (5) ◽  
pp. 595-601 ◽  
Author(s):  
Jan C. Namyslo ◽  
Dieter E. Kaufmann ◽  
Carsten Mai ◽  
Holger Militz

Abstract The development of appropriate chemical precursors that can covalently functionalize natural wood aims at efficient restriction of deterioration. Biological staining experiments were performed with veneer pieces made of sapwood of Scots pine (Pinus sylvestris L.) that had previously been chemically modified with substituted benzoates. Based on the recently published protocol on esterification of wood by means of 1H-benzotriazole activation, the quantity of covalently bonded organomaterials (QCOs), a recently defined advantageous value considering the individual molecular weight of the functionalizing organochemical groups, was obtained in the range of 0.9–1.5 mmol g-1. The modified wood was analyzed by attenuated total reflection IR spectroscopy. Modification with three electronically different benzoates clearly reduced the colonization of the specimen’s surfaces by the blue stain fungus Aureobasidium pullulans but did not fully prevent it. The degree of colonization appeared to decrease with increasing QCO values of the modification agents but apparently did not strongly depend on the additional functionality of the benzoate.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1198
Author(s):  
Yu’an Hu ◽  
Mei He ◽  
Kate Semple ◽  
Meiling Chen ◽  
Hugo Pineda ◽  
...  

Bamboo fiber composite (BFC) is a unidirectional and continuous bamboo fiber composite manufactured by consolidation and gluing of flattened, partially separated bamboo culm strips into thick and dense panels. The composite mechanical properties are primarily influenced by panel density, its variation and uniformity. This paper characterized the horizontal density distribution (HDD) within BFC panels and its controlling factors. It revealed that HDD follows a normal distribution, with its standard deviation (SD) strongly affected by sampling specimen size, panel thickness and panel locations. SD was lowest in the thickest (40 mm) panel and largest-size (150 × 150-mm2) specimens. There was also a systematic variation along the length of the BFC due to the tapering effect of bamboo culm thickness. Density was higher along panel edges due to restraint from the mold edges during hot pressing. The manual BFC mat forming process is presented and found to effectively minimize the density variation compared to machine-formed wood composites. This study provides a basic understanding of and a quality control guide to the formation uniformity of BFC products.


Author(s):  
João PM Pragana ◽  
Tomás RM Contreiras ◽  
Ivo MF Bragança ◽  
Carlos MA Silva ◽  
Luis M Alves ◽  
...  

This article presents new joining-by-forming processes to assemble longitudinally two metal–polymer sandwich composite panels perpendicular to one another. Process design draws from an earlier development of the authors for metal sheets to new concepts based on the combination of sheet-bulk forming with mortise-and-tenon joints. Selected examples obtained from experimentation and finite element modelling give support to the presentation. A new three-stage joining by the forming process is capable of producing mechanically locked joints with larger and stiffer flat-shaped heads than those fabricated by alternative single- or two-stage solutions. Failure in the new three-stage joining by the forming process is found to take place by cracking instead of disassembling after unbending the flat-shaped head of the joint back to its original shape. The required forming forces to produce the new metal–polymer joints are below 15 kN, allowing them to be an effective, easy-to-implement alternative to existing solutions based on adhesive bonding, welding and mechanical fastening.


Sign in / Sign up

Export Citation Format

Share Document