Obesity and cardiovascular disease: role of adipose tissue, inflammation, and the renin-angiotensin-aldosterone system

Author(s):  
Guido Lastra ◽  
James R. Sowers

AbstractObesity is a leading contributor to morbidity and mortality worldwide. Chronic overnutrition and lack of physical activity result in excess deposition of adipose tissue and insulin resistance, which plays a key role in the pathophysiology of type 2 diabetes mellitus (DM2) and associated cardiovascular disease (CVD). Dysfunctional adipose tissue in obese individuals is characterized by chronic low-grade inflammation that spreads to several tissues as well as systemically and is able to impact the cardiovascular system, resulting in both functional and anatomical abnormalities. Inflammation is characterized by abnormalities in both innate and adaptive immunity including adipose tissue infiltration by CD4+ T lymphocytes, pro-inflammatory (M1) macrophages, and increased production of adipokines. The renin-angiotensin-aldosterone system (RAAS) is inappropriately activated in adipose tissue and contributes to originating and perpetuating inflammation and excessive oxidative stress by increasing production of reactive oxygen species (ROS). In turn, ROS and pro-inflammatory adipokines cause resistance to the metabolic actions of insulin in several tissues including cardiovascular and adipose tissue. Insulin resistance in cardiovascular tissues is characterized by impaired vascular reactivity and abnormal cardiac contractility as well as hypertrophy, fibrosis, and remodeling, which ultimately result in CVD. In this context, weight loss through caloric restriction, regular physical activity, and surgery as well as pharmacologic RAAS blockade all play a key role in reducing obesity-related cardiovascular morbidity and mortality.

Author(s):  
Morihiro Matsuda ◽  
Iichiro Shimomura

AbstractObesity leads to the development of type 2 diabetes mellitus, which is a strong risk factor for cardiovascular disease. A better understanding of the molecular basis of obesity will lead to the establishment of effective prevention strategies for cardiovascular diseases. Adipocytes have been shown to generate a variety of endocrine factors termed adipokines/adipocytokines. Obesity-associated changes to these adipocytokines contribute to the development of cardiovascular diseases. Adiponectin, which is one of the most well-characterized adipocytokines, is produced exclusively by adipocytes and exerts insulin-sensitizing and anti-atherogenic effects. Obese subjects have lower levels of circulating adiponectin, and this is recognized as one of the factors involved in obesity-induced insulin resistance and atherosclerosis. Another pathophysiological feature of obesity may involve the low-grade chronic inflammation in adipose tissue. This inflammatory process increases oxidative stress in adipose tissue, which may affect remote organs, leading to the development of diabetes, hypertension, and atherosclerosis. Nuclear hormone receptors (NRs) regulate the transcription of the target genes in response to binding with their ligands, which include metabolic and nutritional substrates. Among the various NRs, peroxisome proliferator-activated receptor γ promotes the transcription of adiponectin and antioxidative enzymes, whereas mineralocorticoid receptor mediates the effects of aldosterone and glucocorticoid to induce oxidative stress in adipocytes. It is hypothesized that both play crucial roles in the pathophysiology of obesity-associated insulin resistance and cardiovascular diseases. Thus, reduced adiponectin and increased oxidative stress play pathological roles in obesity-associated insulin resistance to increase the cardiovascular disease risk, and various NRs may be involved in this pathogenesis.


2007 ◽  
Vol 112 (7) ◽  
pp. 375-384 ◽  
Author(s):  
Carmine Savoia ◽  
Ernesto L. Schiffrin

More than 80% of patients with type 2 diabetes mellitus develop hypertension, and approx. 20% of patients with hypertension develop diabetes. This combination of cardiovascular risk factors will account for a large proportion of cardiovascular morbidity and mortality. Lowering elevated blood pressure in diabetic hypertensive individuals decreases cardiovascular events. In patients with hypertension and diabetes, the pathophysiology of cardiovascular disease is multifactorial, but recent evidence points toward the presence of an important component dependent on a low-grade inflammatory process. Angiotensin II may be to a large degree responsible for triggering vascular inflammation by inducing oxidative stress, resulting in up-regulation of pro-inflammatory transcription factors such as NF-κB (nuclear factor κB). These, in turn, regulate the generation of inflammatory mediators that lead to endothelial dysfunction and vascular injury. Inflammatory markers (e.g. C-reactive protein, chemokines and adhesion molecules) are increased in patients with hypertension and metabolic disorders, and predict the development of cardiovascular disease. Lifestyle modification and pharmacological approaches (such as drugs that target the renin–angiotensin system) may reduce blood pressure and inflammation in patients with hypertension and metabolic disorders, which will reduce cardiovascular risk, development of diabetes and cardiovascular morbidity and mortality.


2004 ◽  
Vol 29 (6) ◽  
pp. 808-829 ◽  
Author(s):  
Lindsay E. Robinson ◽  
Terry E. Graham

The metabolic syndrome comprises an array of cardiovascular disease (CVD) risk factors such as abdominal obesity, dyslipidemia, hypertension, and glucose intolerance. Insulin resistance and/or increased abdominal (visceral) obesity have been suggested as potential etiological factors. More recently, increasing evidence has associated insulin resistance and subclinical inflammation involving cytokines derived from adipose tissue, or adipocytokines. Despite the fact that precise mechanisms have yet to be established, there is a significant role for both diet and physical activity to improve the many factors associated with the metabolic syndrome, including modulation of various adipocytokines. Although both diet and physical activity have been studied for their ability to modify cytokines in more traditional inflammatory conditions, such as rheumatoid arthritis, they have been less studied in relation to inflammation as an underlying cause of the metabolic syndrome and/or CVD. A more thorough understanding of the clustering of metabolic abnormalities and their underlying etiology will help to define diet and physical activity guidelines for preventing and treating the metabolic syndrome, an important aspect of CVD prevention. This paper will address potential underlying causes of the metabolic syndrome, with a focus on the putative mechanistic role of adipocytokines, and will discuss the impact of diet and physical activity on the metabolic syndrome. Key words: insulin resistance syndrome, obesity, adipose tissue, skeletal muscle, cytokines, TNF-α, IL-6, PAI-1, inflammation, nutrition, exercise


2007 ◽  
Vol 293 (4) ◽  
pp. H2009-H2023 ◽  
Author(s):  
Shawna A. Cooper ◽  
Adam Whaley-Connell ◽  
Javad Habibi ◽  
Yongzhong Wei ◽  
Guido Lastra ◽  
...  

Hypertension commonly occurs in conjunction with insulin resistance and other components of the cardiometabolic syndrome. Insulin resistance plays a significant role in the relationship between hypertension, Type 2 diabetes mellitus, chronic kidney disease, and cardiovascular disease. There is accumulating evidence that insulin resistance occurs in cardiovascular and renal tissue as well as in classical metabolic tissues (i.e., skeletal muscle, liver, and adipose tissue). Activation of the renin-angiotensin-aldosterone system and subsequent elevations in angiotensin II and aldosterone, as seen in cardiometabolic syndrome, contribute to altered insulin/IGF-1 signaling pathways and reactive oxygen species formation to induce endothelial dysfunction and cardiovascular disease. This review examines currently understood mechanisms underlying the development of resistance to the metabolic actions of insulin in cardiovascular as well as skeletal muscle tissue.


2009 ◽  
Vol 116 (6) ◽  
pp. 467-477 ◽  
Author(s):  
Sebastiano Sciarretta ◽  
Francesco Paneni ◽  
Francesca Palano ◽  
Diana Chin ◽  
Giuliano Tocci ◽  
...  

Left ventricular diastolic dysfunction represents a frequent clinical condition and is associated with increased cardiovascular morbidity and mortality. Diastolic dysfunction is the most common cause of HF-PSF (heart failure with preserved ejection fraction). Therefore it becomes important to understand the pathophysiological mechanisms underlying diastolic dysfunction, as well as the effective therapeutic strategies able to antagonize its development and progression. Among the complex pathophysiological factors that may contribute to the development of diastolic dysfunction, the RAAS (renin–angiotensin–aldosterone system) has been shown to play a significant role. Paracrine and autocrine signals of the RAAS promote structural and functional changes in the heart largely linked to increased myocardial fibrosis. Enhanced and dysregulated activity of the RAAS also contributes to the development of volume overload and vasoconstriction with subsequent increases in left ventricular diastolic filling pressures and a higher susceptibility of developing CHF (congestive heart failure). More recently, it has also been suggested that the RAAS may play a role in triggering myocardial and vascular inflammation through the activation of different cell types and the secretion of cytokines and chemokines. RAAS-induced myocardial inflammation leads to perivascular myocardial fibrosis and to the development or progression of diastolic dysfunction. For these reasons pharmacological blockade of the RAAS has been proposed as a rational approach for the treatment of diastolic dysfunction. In fact, ACEIs (angiotensin-converting enzyme inhibitors), ARBs (angiotensin II receptor blockers) and AAs (aldosterone antagonists) have been demonstrated to delay the development and progression from pre-clinical diastolic dysfunction towards CHF, as well as to reduce the morbidity and mortality associated with this condition.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Longbiao Yao ◽  
Oana Herlea-Pana ◽  
Janet Heuser-Baker ◽  
Yitong Chen ◽  
Jana Barlic-Dicen

The escalating epidemic of obesity has increased the incidence of obesity-induced complications to historically high levels. Adipose tissue is a dynamic energy depot, which stores energy and mobilizes it during nutrient deficiency. Excess nutrient intake resulting in adipose tissue expansion triggers lipid release and aberrant adipokine, cytokine and chemokine production, and signaling that ultimately lead to adipose tissue inflammation, a hallmark of obesity. This low-grade chronic inflammation is thought to link obesity to insulin resistance and the associated comorbidities of metabolic syndrome such as dyslipidemia and hypertension, which increase risk of type 2 diabetes and cardiovascular disease. In this review, we focus on and discuss members of the chemokine system for which there is clear evidence of participation in the development of obesity and obesity-induced pathologies.


2009 ◽  
Vol 68 (4) ◽  
pp. 378-384 ◽  
Author(s):  
Henrike Sell ◽  
Jürgen Eckel

A strong causal link between increased adipose tissue mass and insulin resistance in tissues such as liver and skeletal muscle exists in obesity-related disorders such as type 2 diabetes. Increased adipose tissue mass in obese patients and patients with diabetes is associated with altered secretion of adipokines, which also includes chemotactic proteins. Adipose tissue releases a wide range of chemotactic proteins including many chemokines and chemerin, which are interesting targets for adipose tissue biology and for biomedical research in obesity and obesity-related diseases. This class of adipokines may be directly linked to a chronic state of low-grade inflammation and macrophage infiltration in adipose tissue, a concept intensively studied in adipose tissue biology in recent years. The inflammatory state of adipose tissue in obese patients may be the most important factor linking increased adipose tissue mass to insulin resistance. Furthermore, chemoattractant adipokines may play an important role in this situation, as many of these proteins possess biological activity beyond the recruitment of immune cells including effects on adipogenesis and glucose homeostasis in insulin-sensitive tissues. The present review provides a summary of experimental evidence of the role of adipose tissue-derived chemotactic cytokines and their function in insulin resistancein vivoandin vitro.


Author(s):  
Charmaine S. Tam ◽  
Leanne M. Redman

AbstractObesity is characterized by a state of chronic low-grade inflammation due to increased immune cells, specifically infiltrated macrophages into adipose tissue, which in turn secrete a range of proinflammatory mediators. This nonselective low-grade inflammation of adipose tissue is systemic in nature and can impair insulin signaling pathways, thus, increasing the risk of developing insulin resistance and type 2 diabetes. The aim of this review is to provide an update on clinical studies examining the role of adipose tissue in the development of obesity-associated complications in humans. We will discuss adipose tissue inflammation during different scenarios of energy imbalance and metabolic dysfunction including obesity and overfeeding, weight loss by calorie restriction or bariatric surgery, and conditions of insulin resistance (diabetes, polycystic ovarian syndrome).


Sign in / Sign up

Export Citation Format

Share Document