Oligomerization of polytopic α-helical membrane proteins: causes and consequences

2012 ◽  
Vol 393 (11) ◽  
pp. 1215-1230 ◽  
Author(s):  
Florian Cymer ◽  
Dirk Schneider

Abstract Several polytopic α-helical membrane-integrated proteins appear to be organized in higher-ordered oligomeric complexes. While many aspects are still enigmatic, in recent years, the physiological impact of membrane protein oligomerization has been analyzed to some extent. In the present article, oligomerization of structurally well-defined membrane proteins is discussed. The available experimental information indicates the causes and physiological consequences of membrane protein oligomerization, including stabilization, cooperative functions, and control of specific activities. Based on the currently available observations, we aim to derive some general principles and discuss open questions.

2009 ◽  
Vol 390 (8) ◽  
Author(s):  
Jonas Borch ◽  
Thomas Hamann

Abstract A major challenge in the research on membrane-anchored and integral membrane protein complexes is to obtain these in a functionally active, water-soluble, and monodisperse form. This requires the incorporation of the membrane proteins into a native-like membrane or detergent micelle that mimics the properties of the original biological membrane. However, solubilization in detergents or reconstitution in liposomes or supported monolayers sometimes suffers from loss of activity and problematic analyses due to heterogeneity and aggregation. A developing technology termed nanodiscs exploits discoidal phospholipid bilayers encircled by a stabilizing amphipatic helical membrane scaffold protein to reconstitute membranes with integral proteins. After reconstitution, the membrane nanodisc is soluble, stable, and monodisperse. In the present review, we outline the biological inspiration for nanodiscs as discoidal high-density lipoproteins, the assembly and handling of nanodiscs, and finally their diverse biochemical applications. In our view, major advantages of nanodisc technology for integral membrane proteins is homogeneity, control of oligomerization state, access to both sides of the membrane, and control of lipids in the local membrane environment of the integral protein.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Erik Henrich ◽  
Oliver Peetz ◽  
Christopher Hein ◽  
Aisha Laguerre ◽  
Beate Hoffmann ◽  
...  

Membrane proteins frequently assemble into higher order homo- or hetero-oligomers within their natural lipid environment. This complex formation can modulate their folding, activity as well as substrate selectivity. Non-disruptive methods avoiding critical steps, such as membrane disintegration, transfer into artificial environments or chemical modifications are therefore essential to analyze molecular mechanisms of native membrane protein assemblies. The combination of cell-free synthetic biology, nanodisc-technology and non-covalent mass spectrometry provides excellent synergies for the analysis of membrane protein oligomerization within defined membranes. We exemplify our strategy by oligomeric state characterization of various membrane proteins including ion channels, transporters and membrane-integrated enzymes assembling up to hexameric complexes. We further indicate a lipid-dependent dimer formation of MraY translocase correlating with the enzymatic activity. The detergent-free synthesis of membrane protein/nanodisc samples and the analysis by LILBID mass spectrometry provide a versatile platform for the analysis of membrane proteins in a native environment.


2019 ◽  
Vol 476 (21) ◽  
pp. 3241-3260
Author(s):  
Sindhu Wisesa ◽  
Yasunori Yamamoto ◽  
Toshiaki Sakisaka

The tubular network of the endoplasmic reticulum (ER) is formed by connecting ER tubules through three-way junctions. Two classes of the conserved ER membrane proteins, atlastins and lunapark, have been shown to reside at the three-way junctions so far and be involved in the generation and stabilization of the three-way junctions. In this study, we report TMCC3 (transmembrane and coiled-coil domain family 3), a member of the TEX28 family, as another ER membrane protein that resides at the three-way junctions in mammalian cells. When the TEX28 family members were transfected into U2OS cells, TMCC3 specifically localized at the three-way junctions in the peripheral ER. TMCC3 bound to atlastins through the C-terminal transmembrane domains. A TMCC3 mutant lacking the N-terminal coiled-coil domain abolished localization to the three-way junctions, suggesting that TMCC3 localized independently of binding to atlastins. TMCC3 knockdown caused a decrease in the number of three-way junctions and expansion of ER sheets, leading to a reduction of the tubular ER network in U2OS cells. The TMCC3 knockdown phenotype was partially rescued by the overexpression of atlastin-2, suggesting that TMCC3 knockdown would decrease the activity of atlastins. These results indicate that TMCC3 localizes at the three-way junctions for the proper tubular ER network.


Author(s):  
Giovanna Bianchi

In 1994, an article appeared in the Italian journal Archeologia Medievale, written by Chris Wickham and Riccardo Francovich, entitled ‘Uno scavo archeologico ed il problema dello sviluppo della signoria territoriale: Rocca San Silvestro e i rapporti di produzione minerari’. It marked a breakthrough in the study of the exploitation of mineral resources (especially silver) in relation to forms of power, and the associated economic structure, and control of production between the twelfth and thirteenth centuries. On the basis of the data available to archeological research at the time, the article ended with a series of open questions, especially relating to the early medieval period. The new campaign of field research, focused on the mining landscape of the Colline Metallifere in southern Tuscany, has made it possible to gather more information. While the data that has now been gathered are not yet sufficient to give definite and complete answers to those questions, they nevertheless allow us to now formulate some hypotheses which may serve as the foundations for broader considerations as regards the relationship between the exploitation of a fundamental resource for the economy of the time, and the main players and agents in that system of exploitation, within a landscape that was undergoing transformation in the period between the early medieval period and the middle centuries of the Middle Ages.


2005 ◽  
Vol 33 (5) ◽  
pp. 910-912 ◽  
Author(s):  
P.J. Bond ◽  
J. Cuthbertson ◽  
M.S.P. Sansom

Interactions between membrane proteins and detergents are important in biophysical and structural studies and are also biologically relevant in the context of folding and transport. Despite a paucity of high-resolution data on protein–detergent interactions, novel methods and increased computational power enable simulations to provide a means of understanding such interactions in detail. Simulations have been used to compare the effect of lipid or detergent on the structure and dynamics of membrane proteins. Moreover, some of the longest and most complex simulations to date have been used to observe the spontaneous formation of membrane protein–detergent micelles. Common mechanistic steps in the micelle self-assembly process were identified for both α-helical and β-barrel membrane proteins, and a simple kinetic mechanism was proposed. Recently, simplified (i.e. coarse-grained) models have been utilized to follow long timescale transitions in membrane protein–detergent assemblies.


Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 915
Author(s):  
Gözde Dursun ◽  
Muhammad Umer ◽  
Bernd Markert ◽  
Marcus Stoffel

(1) Background: Bioreactors mimic the natural environment of cells and tissues by providing a controlled micro-environment. However, their design is often expensive and complex. Herein, we have introduced the development of a low-cost compression bioreactor which enables the application of different mechanical stimulation regimes to in vitro tissue models and provides the information of applied stress and strain in real-time. (2) Methods: The compression bioreactor is designed using a mini-computer called Raspberry Pi, which is programmed to apply compressive deformation at various strains and frequencies, as well as to measure the force applied to the tissue constructs. Besides this, we have developed a mobile application connected to the bioreactor software to monitor, command, and control experiments via mobile devices. (3) Results: Cell viability results indicate that the newly designed compression bioreactor supports cell cultivation in a sterile environment without any contamination. The developed bioreactor software plots the experimental data of dynamic mechanical loading in a long-term manner, as well as stores them for further data processing. Following in vitro uniaxial compression conditioning of 3D in vitro cartilage models, chondrocyte cell migration was altered positively compared to static cultures. (4) Conclusion: The developed compression bioreactor can support the in vitro tissue model cultivation and monitor the experimental information with a low-cost controlling system and via mobile application. The highly customizable mold inside the cultivation chamber is a significant approach to solve the limited customization capability of the traditional bioreactors. Most importantly, the compression bioreactor prevents operator- and system-dependent variability between experiments by enabling a dynamic culture in a large volume for multiple numbers of in vitro tissue constructs.


BMC Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Cheng-Wen He ◽  
Xue-Fei Cui ◽  
Shao-Jie Ma ◽  
Qin Xu ◽  
Yan-Peng Ran ◽  
...  

Abstract Background The vacuole/lysosome is the final destination of autophagic pathways, but can also itself be degraded in whole or in part by selective macroautophagic or microautophagic processes. Diverse molecular mechanisms are involved in these processes, the characterization of which has lagged behind those of ATG-dependent macroautophagy and ESCRT-dependent endosomal multivesicular body pathways. Results Here we show that as yeast cells gradually exhaust available nutrients and approach stationary phase, multiple vacuolar integral membrane proteins with unrelated functions are degraded in the vacuolar lumen. This degradation depends on the ESCRT machinery, but does not strictly require ubiquitination of cargos or trafficking of cargos out of the vacuole. It is also temporally and mechanistically distinct from NPC-dependent microlipophagy. The turnover is facilitated by Atg8, an exception among autophagy proteins, and an Atg8-interacting vacuolar membrane protein, Hfl1. Lack of Atg8 or Hfl1 led to the accumulation of enlarged lumenal membrane structures in the vacuole. We further show that a key function of Hfl1 is the membrane recruitment of Atg8. In the presence of Hfl1, lipidation of Atg8 is not required for efficient cargo turnover. The need for Hfl1 can be partially bypassed by blocking Atg8 delipidation. Conclusions Our data reveal a vacuolar membrane protein degradation process with a unique dependence on vacuole-associated Atg8 downstream of ESCRTs, and we identify a specific role of Hfl1, a protein conserved from yeast to plants and animals, in membrane targeting of Atg8.


2012 ◽  
Vol 27 (2) ◽  
pp. 449-480 ◽  
Author(s):  
Alex G. Oude Elferink

Abstract Environmental impact assessment (EIA) has become widely accepted as an indispensable instrument to manage and control negative impacts of human activities on the environment. The present report analyzes the general legal framework for EIA in maritime areas beyond national jurisdiction (ABNJ) and also considers the regime for assessments in respect of specific activities in ABNJ. The report concludes that these existing frameworks will have to be taken into account if it were to be decided to develop a global instrument on EIA for all activities in ABNJ. The report provides a number of suggestions to move the current international debate on EIA in ABNJ forward.


Membranes ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 155
Author(s):  
Ekaitz Errasti-Murugarren ◽  
Paola Bartoccioni ◽  
Manuel Palacín

Accounting for nearly two-thirds of known druggable targets, membrane proteins are highly relevant for cell physiology and pharmacology. In this regard, the structural determination of pharmacologically relevant targets would facilitate the intelligent design of new drugs. The structural biology of membrane proteins is a field experiencing significant growth as a result of the development of new strategies for structure determination. However, membrane protein preparation for structural studies continues to be a limiting step in many cases due to the inherent instability of these molecules in non-native membrane environments. This review describes the approaches that have been developed to improve membrane protein stability. Membrane protein mutagenesis, detergent selection, lipid membrane mimics, antibodies, and ligands are described in this review as approaches to facilitate the production of purified and stable membrane proteins of interest for structural and functional studies.


Lab on a Chip ◽  
2020 ◽  
Vol 20 (17) ◽  
pp. 3230-3238
Author(s):  
Yuewen Zhang ◽  
Therese W. Herling ◽  
Stefan Kreida ◽  
Quentin A. E. Peter ◽  
Tadas Kartanas ◽  
...  

Membrane proteins are gatekeepers for exchange of information and matter between the intracellular and extracellular environment. This paper opens up a route to probe membrane protein interactions under native solution conditions using microfluidics.


Sign in / Sign up

Export Citation Format

Share Document