Targeting of parvulin interactors by diazirine mediated cross-linking discloses a cellular role of human Par14/17 in actin polymerization

2020 ◽  
Vol 401 (8) ◽  
pp. 955-968
Author(s):  
Anna Goehring ◽  
Irina Michin ◽  
Tina Gerdes ◽  
Nina Schulze ◽  
Mike Blueggel ◽  
...  

AbstractThe peptidyl-prolyl cis/trans isomerases (PPIases) Parvulin 14 (Par14) and Parvulin 17 (Par17) result from alternative transcription initiation of the PIN4 gene. Whereas Par14 is present in all metazoan, Par17 is only expressed in Hominidae. Par14 resides mainly within the cellular nucleus, while Par17 is translocated into mitochondria. Using photo-affinity labeling, cross-linking and mass spectrometry (MS) we identified binding partners for both enzymes from HeLa lysates and disentangled their cellular roles. Par14 is involved in biogenesis of ribonucleoprotein (RNP)-complexes, RNA processing and DNA repair. Its elongated isoform Par17 participates in protein transport/translocation and in cytoskeleton organization. Nuclear magnetic resonance (NMR) spectroscopy reveals that Par17 binds to β-actin with its N-terminal region, while both parvulins initiate actin polymerization depending on their PPIase activity as monitored by fluorescence spectroscopy. The knockdown (KD) of Par17 in HCT116 cells results in a defect in cell motility and migration.

2021 ◽  
Vol 22 (21) ◽  
pp. 11727
Author(s):  
Maria J. Sarmento ◽  
Luís Borges-Araújo ◽  
Sandra N. Pinto ◽  
Nuno Bernardes ◽  
Joana C. Ricardo ◽  
...  

Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) is an essential plasma membrane component involved in several cellular functions, including membrane trafficking and cytoskeleton organization. This function multiplicity is partially achieved through a dynamic spatiotemporal organization of PI(4,5)P2 within the membrane. Here, we use a Förster resonance energy transfer (FRET) approach to quantitatively assess the extent of PI(4,5)P2 confinement within the plasma membrane. This methodology relies on the rigorous evaluation of the dependence of absolute FRET efficiencies between pleckstrin homology domains (PHPLCδ) fused with fluorescent proteins and their average fluorescence intensity at the membrane. PI(4,5)P2 is found to be significantly compartmentalized at the plasma membrane of HeLa cells, and these clusters are not cholesterol-dependent, suggesting that membrane rafts are not involved in the formation of these nanodomains. On the other hand, upon inhibition of actin polymerization, compartmentalization of PI(4,5)P2 is almost entirely eliminated, showing that the cytoskeleton network is the critical component responsible for the formation of nanoscale PI(4,5)P2 domains in HeLa cells.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Yan Hu ◽  
Qiongfang Yu ◽  
Yao Zhong ◽  
Wei Shen ◽  
Xiaoyan Zhou ◽  
...  

ELMO3 is a member of the engulfment and cell motility (ELMO) protein family, which plays a vital role in the process of chemotaxis and metastasis of tumor cells. However, remarkably little is known about the role of ELMO3 in cancer. The present study was conducted to investigate the function and role of ELMO3 in gastric cancer (GC) progression. The expression level of ELMO3 in gastric cancer tissues and cell lines was measured by means of real-time quantitative PCR (qPCR) and Western blot analysis. RNA interference was used to inhibit ELMO3 expression in gastric cancer cells. Then, wound-healing assays, Transwell assays, MTS assays, flow cytometry, and fluorescence microscopy were applied to detect cancer cell migration, cell invasion, cell proliferation, the cell cycle, and F-actin polymerization, respectively. The results revealed that ELMO3 expression in GC tumor tissues was significantly higher than in the paired adjacent tissues. Moreover, knockdown of ELMO3 by a specific siRNA significantly inhibited the processes of cell proliferation, invasion, metastasis, regulation of the cell cycle, and F-actin polymerization. Collectively, the results indicate that ELMO3 participates in the processes of cell growth, invasion, and migration, and ELMO3 is expected to be a potential diagnostic and prognostic marker for GC.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2623-2623
Author(s):  
Jessica Nunes ◽  
Ann Ventura ◽  
Kevan Zapolnik ◽  
Eileen Hu ◽  
Liwen Zhang ◽  
...  

Abstract Introduction: Sialic acid-binding immunoglobulin-like lectins (Siglec) are a group of lectins that regulate innate and adaptive immune function via glycan recognition. We and others have shown overexpression of Siglec-6, a member of Siglec family, on B cells from patients with chronic lymphocytic leukemia (CLL) compared to normal donor derived B cells. While placental expression of Siglec-6 has been shown to regulate invasion of trophoblast cells by binding to glycodelin, the biochemical role of Siglec-6 in CLL patients is not known. We describe here for the first time the functional relevance of Siglec-6 and its ligand sialyl Tn (sTn) in cell adhesion and migration in CLL. Biochemical mechanisms of Siglec-6 mediated cell adhesion and migration through DOCK8 dependent activation of Cdc42 associated with actin polymerization in CLL cells are presented. Further, the physiological relevance of Siglec-6/ DOCK8 axis in CLL cell adhesion and migration is validated using primary CLL patient samples, and genetically engineered loss of function Siglec-6 and DOCK8 mutant MEC1 CLL cell line. These studies thus elucidate the biological role of Siglec-6 in malignant CLL B cells and demonstrate therapeutic opportunities targeting Siglec-6 in CLL. Methods: Flow cytometry was used to analyze surface expression of Siglec-6 and sTn in CLL patients and normal donors. Transwell migration assay was used to assess in-vitro migratory role of Siglec-6. Mass spectrometry analysis was performed to identify Siglec-6 interacting proteins. CRISPR/Cas9 technique was used to generate knock-out (KO) cell lines for mechanistic studies. Phalloidin staining followed by confocal imaging was used to examine actin polymerization. Cdc42 activation was evaluated using a commercial kit which uses specialized PAK1-PBD agarose beads to pull down GTP-bound Cdc42. To study the in-vivo migratory role of Siglec-6, MEC1 CLL cell line or primary CLL cells were blocked with an isotype antibody or Siglec-6 targeted antibody and injected into the tail vein of NSG immunocompromised mice. 24 hrs later, mice were euthanized and spleens and BM were processed followed by flow cytometry analysis to determine the number of human CD45+ cells that have migrated. Results: We confirmed Siglec-6 overexpression on B cells from CLL patients when compared to B cells from normal donors. Interestingly, we also found expression of sTn on bone marrow stromal cells (BMSCs) derived from CLL patients but not healthy donors. Compared to Siglec-6 + CLL cells, Siglec-6 - CLL cells exhibited significant reduction in adhesion to (~50%) and migration towards (~50%) media containing sTn or sTn + CLL-BMSCs in cell adhesion and trans-well migration assays. Importantly, a Siglec-6 targeted antibody inhibited homing of Siglec-6 + MEC1 cells and primary CLL cells to the spleen and bone marrow in NSG mice (~35%). Mass spectrometry and co-immunoprecipitation analysis in MEC1 cells revealed interaction of Siglec-6 with DOCK8, a guanine nucleotide exchange factor. Stimulation of Siglec-6 + MEC1 cells with sTn resulted in Cdc42 activation and WASP protein recruitment, which are both downstream targets of DOCK8 involved in cell migration. Further, sTn also promoted actin polymerization, an effect that was compromised in Siglec-6 or DOCK8 KO MEC1 cells. Additionally, cell fractionation experiments revealed that Siglec-6 + MEC1 cells had higher levels of DOCK8 at the cell membrane when compared to MEC1 Siglec-6 KO cells, indicating that Siglec-6 may be responsible for tethering DOCK8 to the cell membrane. Conclusions: We have for the first time shown Siglec-6 dependent recruitment of DOCK8 leading to migration and adhesion of B-CLL cells. Siglec-6 signals via DOCK8 to mediate sTn ligand dependent actin polymerization. We have also shown that sTn promotes Cdc42 activation and WASP protein recruitment which are both essential for actin polymerization. Moreover, all these effects were prevented by CRISPR/Cas9 mediated knock out of Siglec-6 or DOCK8 in MEC1 CLL cell line. Thus, Siglec-6 represents a CLL-specific target that opens up new therapeutic avenues to target only malignant B-CLL cells. Ongoing studies are focused on determining molecular mechanisms of Siglec-6 mediated regulation of actin polymerization and CLL-BMSC interactions. [This work was supported by NIH-R21 Grant and Pelotonia Idea grants. JN is a recipient of Pelotonia Graduate Fellowship] Disclosures Byrd: Newave: Membership on an entity's Board of Directors or advisory committees; Vincerx Pharmaceuticals: Current equity holder in publicly-traded company, Membership on an entity's Board of Directors or advisory committees; Novartis, Trillium, Astellas, AstraZeneca, Pharmacyclics, Syndax: Consultancy, Honoraria.


2003 ◽  
Vol 278 (20) ◽  
pp. 17912-17917 ◽  
Author(s):  
George A. Kassavetis ◽  
Shulin Han ◽  
Souad Naji ◽  
E. Peter Geiduschek

2013 ◽  
Vol 449 (3) ◽  
pp. 695-705 ◽  
Author(s):  
Vicki A. M. Gold ◽  
Sarah Whitehouse ◽  
Alice Robson ◽  
Ian Collinson

The motor ATPase SecA drives protein secretion through the bacterial Sec complex. The PPXD (pre-protein cross-linking domain) of the enzyme has been observed in different positions, effectively opening and closing a clamp for the polypeptide substrate. We set out to explore the implicated dynamic role of the PPXD in protein translocation by examining the effects of its immobilization, either in the position occupied in SecA alone with the clamp held open or when in complex with SecYEG with the clamp closed. We show that the conformational change from the former to the latter is necessary for high-affinity association with SecYEG and a corresponding activation of ATPase activity, presumably due to the PPXD contacting the NBDs (nucleotide-binding domains). In either state, the immobilization prevents pre-protein transport. However, when the PPXD was attached to an alternative position in the associated SecYEG complex, with the clamp closed, the transport capability was preserved. Therefore large-scale conformational changes of this domain are required for the initiation process, but not for translocation itself. The results allow us to refine a model for protein translocation, in which the mobility of the PPXD facilitates the transfer of pre-protein from SecA to SecYEG.


1995 ◽  
Vol 73 (05) ◽  
pp. 850-856 ◽  
Author(s):  
F D Rubens ◽  
D W Perry ◽  
M W C Hatton ◽  
P D Bishop ◽  
M A Packham ◽  
...  

SummaryPlatelet accumulation on small- and medium-calibre vascular grafts plays a significant role in graft occlusion. We examined platelet accumulation on the surface of fibrin-coated polyethylene tubing (internal diameter 0.17 cm) during 10 min of flow (l0ml/min) at high wall shear rate (764 s-1). Washed platelets labelled with 51Cr were resuspended in Tyrode solution containing albumin, apyrase and red blood cells (hematocrit 40%). When the thrombin that was used to form the fibrin-coated surface was inactivated with FPRCH2C1 before perfusion of the tubes with the platelet:red blood cell suspension, the accumulation of platelets was 59,840 ± 27,960 platelets per mm2, whereas accumulation on fibrin with residual active thrombin was 316,750 ± 32,560 platelets per mm2 (n = 4). When the fibrin on the surface was cross-linked by including recombinant factor XIII (rFXIII) in the fibrinogen solution used to prepare the fibrin-coated surface, platelet accumulation, after thrombin neutralization, was reduced by the cross-linking from 46,974 ± 9702 to 36,818 ± 7964 platelets per mm2 (n = 12, p <0.01). Platelet accumulation on tubes coated with D-dimer was ten times less than on tubes coated with D-domain; this finding also supports the observation that cross-linking of fibrin with the formation of γ-γ dimers reduces platelet accumulation on the fibrin-coated surface. Thrombin-activated platelets themselves were shown to cross-link fibrin when they had adhered to it during perfusion, or in a static system in which thrombin was used to form clots from FXIII-free fibrinogen in the presence of platelets. Thus, cross-linking of fibrin by FXIII in plasma or from platelets probably decreases the reactivity of the fibrin-containing thrombi to platelets by altering the lysine residue at or near the platelet-binding site of each of the γ-chains of the fibrinogen which was converted into the fibrin of these thrombi.


1997 ◽  
Vol 77 (05) ◽  
pp. 0959-0963 ◽  
Author(s):  
Lisa Seale ◽  
Sarah Finney ◽  
Roy T Sawyer ◽  
Robert B Wallis

SummaryTridegin is a potent inhibitor of factor Xllla from the leech, Haementeria ghilianii, which inhibits protein cross-linking. It modifies plasmin-mediated fibrin degradation as shown by the absence of D-dimer and approximately halves the time for fibrinolysis. Plasma clots formed in the presence of Tridegin lyse more rapidly when either streptokinase, tissue plasminogen activator or hementin is added 2 h after clot formation. The effect of Tridegin is markedly increased if clots are formed from platelet-rich plasma. Platelet-rich plasma clots are lysed much more slowly by the fibrinolytic enzymes used and if Tridegin is present, the rate of lysis returns almost to that of platelet- free clots. These studies indicate the important role of platelets in conferring resistance to commonly used fibrinolytic enzymes and suggest that protein cross-linking is an important step in this effect. Moreover they indicate that Tridegin, a small polypeptide, may have potential as an adjunct to thrombolytic therapy.


2018 ◽  
Vol 15 (3) ◽  
pp. 389-398
Author(s):  
Ruchi Singh

Rural economies in developing countries are often characterized by credit constraints. Although few attempts have been made to understand the trends and patterns of male out-migration from Uttar Pradesh (UP), there is dearth of literature on the linkage between credit accessibility and male migration in rural Uttar Pradesh. The present study tries to fill this gap. The objective of this study is to assess the role of credit accessibility in determining rural male migration. A primary survey of 370 households was conducted in six villages of Jaunpur district in Uttar Pradesh. Simple statistical tools and a binary logistic regression model were used for analyzing the data. The result of the empirical analysis shows that various sources of credit and accessibility to them play a very important role in male migration in rural Uttar Pradesh. The study also found that the relationship between credit constraints and migration varies across various social groups in UP.


2017 ◽  
Author(s):  
Serena Martinelli ◽  
Vanessa D'Antongiovanni ◽  
Susan Richter ◽  
Letizia Canu ◽  
Tonino Ercolino ◽  
...  

2019 ◽  
Vol 106 (3) ◽  
pp. 250-260 ◽  
Author(s):  
DN Nandakumar ◽  
P Ramaswamy ◽  
C Prasad ◽  
D Srinivas ◽  
K Goswami

Purpose Glioblastoma cells create glutamate-rich tumor microenvironment, which initiates activation of ion channels and modulates downstream intracellular signaling. N-methyl-D-aspartate receptors (NMDARs; a type of glutamate receptors) have a high affinity for glutamate. The role of NMDAR activation on invasion of glioblastoma cells and the crosstalk with α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) is yet to be explored. Main methods LN18, U251MG, and patient-derived glioblastoma cells were stimulated with NMDA to activate NMDAR glutamate receptors. The role of NMDAR activation on invasion and migration and its crosstalk with AMPAR were evaluated. Invasion and migration of glioblastoma cells were investigated by in vitro trans-well Matrigel invasion and trans-well migration assays, respectively. Expression of NMDARs and AMPARs at transcript level was evaluated by quantitative real-time polymerase chain reaction. Results We determined that NMDA stimulation leads to enhanced invasion in LN18, U251MG, and patient-derived glioblastoma cells, whereas inhibition of NMDAR using MK-801, a non-competitive antagonist of the NMDAR, significantly decreased the invasive capacity. Concordant with these findings, migration was significantly augmented by NMDAR in both cell lines. Furthermore, NMDA stimulation upregulated the expression of GluN2 and GluA1 subunits at the transcript level. Conclusions This study demonstrated the previously unexplored role of NMDAR in invasion of glioblastoma cells. Furthermore, the expression of the GluN2 subunit of NMDAR and the differential overexpression of the GluA1 subunit of AMPAR in both cell lines provide a plausible rationale of crosstalk between these calcium-permeable subunits in the glutamate-rich microenvironment of glioblastoma.


Sign in / Sign up

Export Citation Format

Share Document