Ultrasound-assisted extraction of phenolic compounds from avocado leaves (Persea americana Mill. var. Drymifolia): optimization and modeling

Author(s):  
Gamaliel Che-Galicia ◽  
Henry A. Váquiro-Herrera ◽  
Álvaro Sampieri ◽  
Edith Corona-Jiménez

AbstractUltrasonic-assisted extraction (UAE) was performed to extract the total phenolic compounds from avocado (Persea americana Mill. var. Drymifolia; Lauraceae) leaves with different electric powers (UAE 0%, UAE 60%, and UAE 100%) and extraction times. Ultrasonic extraction parameters were optimized by using a mathematical model made by stepwise regression (SWR) for the determination of the maximum total phenolic content (TPC) and their antioxidant activity. Moreover, TPC extraction was modeled applying heterogeneous models to elucidate the involved mechanisms phenomena that determine the extraction rates. Optimization results found that the maximum value of TPC reached 48,732 mg GAE/100 g D.M. at 84.5% electric power and 29.7 min of extraction, which was superior to 0% electric power UAE. It was also found that the ultrasound causes the degradation of phenolic compounds, whereas the final extraction yield of TPC increases and their antioxidant activity decreased with the increase of ultrasound electric power. Proposed models gave a satisfactory quality of fit data using a second-order reaction for the degradation kinetics of TPC under ultrasound application. The estimated effective diffusivity values were in a range from 1.3889 × 10−11 m2/s to 2.2128 × 10−11 m2/s for the UAE 0% and UAE 100%, respectively. UAE significantly increased the extraction yield through the enhancement of the effective diffusivity, demonstrating that it is a promising technology to extract phenolic substances from avocado leaves.

Antioxidants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 582
Author(s):  
Inês Mansinhos ◽  
Sandra Gonçalves ◽  
Raquel Rodríguez-Solana ◽  
José Luis Ordóñez-Díaz ◽  
José Manuel Moreno-Rojas ◽  
...  

The present study aimed at evaluating the effectiveness of different natural deep eutectic solvents (NADES) on the extraction of phenolic compounds from Lavandula pedunculata subsp. lusitanica (Chaytor) Franco, on the antioxidant activity, and acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and tyrosinase (Tyr) inhibitory capacities. Ten different NADES were used in this research and compared with conventional solvents. Ultrasound-assisted extraction (UAE) for 60 min proved to be the best extraction condition, and proline:lactic acid (1:1) and choline chloride:urea (1:2) extracts showed the highest total phenolic contents (56.00 ± 0.77 mgGAE/gdw) and antioxidant activity [64.35 ± 1.74 mgTE/gdw and 72.13 ± 0.97 mgTE/gdw in 2.2-diphenyl-1-picrylhydrazyl (DPPH) and 2.2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) methods, respectively]. These extracts also exhibited enzymes inhibitory capacity particularly against Tyr and AChE. Even so, organic acid-based NADES showed to be the best extractants producing extracts with considerable ability to inhibit enzymes. Twenty-four phenolic compounds were identified by HPLC-HRMS, being rosmarinic acid, ferulic acid and salvianolic acid B the major compounds. The results confirmed that the combination of UAE and NADES provide an excellent alternative to organic solvents for sustainable and green extraction, and have huge potential for use in industrial applications involving the extraction of bioactive compounds from plants.


2020 ◽  
Vol 16 (1-2) ◽  
Author(s):  
Cassiano Brown da Rocha ◽  
Caciano Pelayo Zapata Noreña

AbstractThe grape pomace is a by-product from the industrial processing of grape juice, which can be used as a source of bioactive compounds. The aim of this study was to separate the phenolic compounds from grape pomace using an acidic aqueous solution with 2 % citric acid as a solvent, using both ultrasound-assisted extraction, with powers of 250, 350 and 450 W and times of 5, 10 and 15 min, and microwave-assisted extraction using powers of 600, 800 and 1,000 W and times of 5, 7 and 10 min. The results showed that for both methods of extraction, the contents of total phenolic compounds and antioxidant activity by ABTS and DPPH increased with time, and microwave at 1,000 W for 10 min corresponded to the best extraction condition. However, the contents of phenolic compounds and antioxidant activity were lower than exhaustive extraction using acidified methanol solution.


2015 ◽  
Vol 29 (2) ◽  
pp. 231-237 ◽  
Author(s):  
Jana Šic Žlabur ◽  
Sandra Voća ◽  
Nadica Dobričević ◽  
Mladen Brnčić ◽  
Filip Dujmić ◽  
...  

Abstract The aim of the present study was to reveal an effective extraction procedure for maximization of the yield of steviol glycosides and total phenolic compounds as well as antioxidant activity in stevia extracts. Ultrasound assisted extraction was compared with conventional solvent extraction. The examined solvents were water (100°C/24 h) and 70% ethanol (at 70°C for 30 min). Qualitative and quantitative analyses of steviol glycosides in the extracts obtained were performed using high performance liquid chromatography. Total phenolic compounds, flavonoids, and radical scavenging capacity by 2, 2-azino-di-3-ethylbenzothialozine- sulphonic acid) assay were also determined. The highest content of steviol glycosides, total phenolic compounds, and flavonoids in stevia extracts were obtained when ultrasound assisted extraction was used. The antioxidant activity of the extracts was correlated with the total amount of phenolic compounds. The results indicated that the examined sonication parameters represented as the probe diameter (7 and 22 mm) and treatment time (2, 4, 6, 8, and 10 min) significantly contributed to the yield of steviol glycosides, total phenolic compounds, and flavonoids. The optimum conditions for the maximum yield of steviol glycosides, total phenolic compounds, and flavonoids were as follows: extraction time 10 min, probe diameter 22 mm, and temperature 81.2°C.


Proceedings ◽  
2020 ◽  
Vol 70 (1) ◽  
pp. 49
Author(s):  
María del Carmen Razola-Díaz ◽  
Eduardo Jesús Guerra-Hernández ◽  
Celia Rodríguez-Pérez ◽  
Ana María Gómez-Caravaca ◽  
Belén García-Villanova ◽  
...  

Orange peel (OP) is the main by-product from orange juice industry. OP is a known source of bioactive compounds and is widely studied for its antioxidant, anti-inflammatory, anti-cancer, anti-rheumatic, anti-diabetic and cardioprotective activities. Thus, this research focuses on the establishments of ultrasound-assisted extraction of phenolic compounds in orange peel using a sonotrode; objective framed in the European SHEALTHY (non-thermal physical technologies to preserve healthiness of fresh and minimally processed fruit and vegetables) project. For this purpose, a Box Behnken design of 27 experiments was carried out with 4 independent factors (ratio ethanol/water, time (min), amplitude (%) and pulse (%)). Quantitative analyses of total phenolic compounds (TPC) were performed by Folin-Ciocalteu method and the antioxidant activity was measured by ABTS and DPPH methods. The validity of the experimental design was confirmed by ANOVA and the optimal sonotrode extraction conditions were obtained by response surface methodology. The optimal extracts were characterized by HPLC coupled to mass spectrometer detectors. The highest phenolic content and antioxidant activity was obtained using 45/55 ethanol/water (v/v), 35 min, amplitude 90% (110 W) and pulse 100%. The established method allows the extraction of 30.42 mg of gallic acid equivalents/g dry weight of total phenolic compounds from OP; this value suppose an increment up to 60% higher than conventional extraction.


Processes ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1153
Author(s):  
Xi Chen ◽  
Xinyue Li ◽  
Xiangwei Zhu ◽  
Guozhen Wang ◽  
Kun Zhuang ◽  
...  

Jizi439, a newly developed black wheat breeding line, was reported to effectively regulate blood glucose, which may potentially be associated with its intrinsic high level of phenolic compounds (PCs). To maximize the PCs yield and thereby enhance their antioxidant activity, orthogonal experiments were designed in sequence for extrusion of Jizi439 black wheat bran (BWB) powder and followed by the extraction of PCs assisted with ultrasound technique. White wheat bran was used as a control. The optimum condition for extrusion was 110 °C, 25% feed water content, 140 rpm screw speed; meanwhile, 50 °C, 40 min, 35 kHz ultrasonic frequency, 300 W ultrasonic power for ultrasound-assisted extraction (UAE). Total phenolic content (TPC) as determined by Folin–Ciocalteu method was 2856.3 ± 57.7 μg gallic acid equivalents (GAE) per gram of dry weight (DW) of phenolic extract; meanwhile, antioxidant activity (AA) in terms of DPPH radical scavenging ratio was 85.5% ± 1.1% under optimized conditions, which were both significantly higher than the control. Phenolic acids except for gallic acid, as well as flavonoids, including luteolin and apigenin were increased by extrusion and ultrasound, as suggested by HPLC results. In conclusion, our study would provide a valuable reference for processing Jizi439 BWB before making or commercially utilize it into health-related food products.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3783
Author(s):  
Itziar Egüés ◽  
Fabio Hernandez-Ramos ◽  
Iván Rivilla ◽  
Jalel Labidi

In the present work, the optimization of the extraction of antioxidant compounds from apple pomace using ultrasound technology as an environmentally friendly and intensification process was developed. Different sonication powers, extraction temperatures and extraction times were studied and their influence on extraction yield and characteristics of the extracted samples (total phenolic compounds, flavonoid content and antioxidant capacity) are presented. The elaborated experimental design and the analysis of Pareto and response surface diagrams allowed us to determine the optimal extraction conditions. The conditions that allow the maximum extraction of phenolic compounds were found at 20 min, 90 °C and 50% ultrasound amplitude. Nevertheless, at these conditions, the antioxidant capacity measured by DPPH decreased in the extracted samples.


Foods ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 931
Author(s):  
Cristina Reche ◽  
Carmen Rosselló ◽  
Mónica M. Umaña ◽  
Valeria Eim ◽  
Susana Simal

Valorization of an artichoke by-product, rich in bioactive compounds, by ultrasound-assisted extraction, is proposed. The extraction yield curves of total phenolic content (TPC) and chlorogenic acid content (CAC) in 20% ethanol (v/v) with agitation (100 rpm) and ultrasound (200 and 335 W/L) were determined at 25, 40, and 60 °C. A mathematical model considering simultaneous diffusion and convection is proposed to simulate the extraction curves and to quantify both temperature and ultrasound power density effects in terms of the model parameters variation. The effective diffusion coefficient exhibited temperature dependence (72% increase for TPC from 25 °C to 60 °C), whereas the external mass transfer coefficient and the equilibrium extraction yield depended on both temperature (72% and 90% increases for TPC from 25 to 60 °C) and ultrasound power density (26 and 51% increases for TPC from 0 (agitation) to 335 W/L). The model allowed the accurate curves simulation, the average mean relative error being 5.3 ± 2.6%. Thus, the need of considering two resistances in series to satisfactorily simulate the extraction yield curves could be related to the diffusion of the bioactive compound from inside the vegetable cells toward the intercellular volume and from there, to the liquid phase.


Foods ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1120
Author(s):  
María del Carmen Razola-Diaz ◽  
Eduardo Jesús Guerra-Hernández ◽  
Celia Rodríguez-Pérez ◽  
Ana María Gómez-Caravaca ◽  
Belén García-Villanova ◽  
...  

Orange peel is the main by-product from orange juice industry. It is a known source of bioactive compounds, mostly phenolic compounds, and it has been widely studied for its healthy activities. Thus, this research focuses on the establishment of ultrasound-assisted extraction of phenolic compounds in orange peel using a sonotrode. For this purpose, a Box–Behnken design of 27 experiments was carried out with four independent factors—ratio ethanol/water (v/v), time (min), amplitude (%), and pulse (%). Quantitative analyses of phenolic compounds were performed and the antioxidant activity was measured by ABTS and DPPH methods. The validity of the experimental design was confirmed by ANOVA and the optimal sonotrode extraction conditions were obtained by response surface methodology (RSM). The extracts obtained in the established conditions were analyzed by High Performance Liquid Chromatography (HPLC) coupled to mass spectrometer detector and 74 polar compounds were identified. The highest phenolic content and antioxidant activity were obtained using 45/55 ethanol/water (v/v), 35 min, amplitude 90% (110 W), and pulse 100%. The established method allows an increment of phenolics recovery up to 60% higher than a conventional extraction. Moreover, the effect of drying on phenolic content was also evaluated.


Agronomy ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 326 ◽  
Author(s):  
María José Aliaño-González ◽  
Estrella Espada-Bellido ◽  
Marta Ferreiro-González ◽  
Ceferino Carrera ◽  
Miguel Palma ◽  
...  

Two optimized methods for ultrasound-assisted extraction were evaluated for the extraction of two types of acai bioactive compounds: Total anthocyanins (TAs) and total phenolic compounds (TPCs). For the extraction optimization, a Box Behnken factorial design of different variables in the following intervals was used: Methanol-water (25%–75%) for solvent composition, temperatures between 10 and 70 °C, amplitude in the range between 30% and 70% of the maximum amplitude −200 W), extraction solvent pH (2–7), the ratio for sample-solvent (0.5 g:10 mL–0.5 g:20 mL), and cycle between 0.2 and 0.7 s. The extraction kinetics were studied using different periods between 5 and 30 min. TA and TPC were analyzed by UHPLC and the Folin–Ciocalteu method, respectively. Optimized conditions for TA were: 51% MeOH in water, 31 °C temperature, pH 6.38, cycle 0.7 s, 65% amplitude, and 0.5 g:10 mL of sample-solvent ratio. Optimized conditions for the TPC were: 49% MeOH in water, 41 °C temperature, pH 6.98, cycle 0.2 s, 30% amplitude, and 0.5 g:10 mL of sample-solvent ratio. Both methods presented a relative standard deviation below 5% in the precision study. The suitability of the methods was tested in real samples. It was confirmed that these methods are feasible for the extraction of the studied bioactive compounds from different açai matrices.


Sign in / Sign up

Export Citation Format

Share Document