Removal of a reactive dye from simulated textile wastewater by environmentally friendly oxidant calcium peroxide

Author(s):  
Behzat Balci ◽  
Nurevsan Aksoy ◽  
F. Elcin Erkurt ◽  
Fuat Budak ◽  
Mesut Basibuyuk ◽  
...  

Abstract In the present study, calcium peroxide (CaO2) was used separately for potential application as an environmentally friendly and low-cost oxidant for the removal of a textile dye ‘Reactive Black 5’ (RB5) from simulated textile wastewater containing auxiliary chemicals of textile production. The specific morphology, elemental analysis, particle size distribution, specific surface area, identification of crystalline phases and surface functional groups of the synthesized CaO2 were investigated by scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), laser diffraction (LD), Brunaure–Emmett–Teller method (BET), X-ray diffraction (XRD) and Fourier transmission infrared (FTIR), respectively. X-ray Diffraction analysis confirmed the synthesized oxidant as CaO2 with the tetragonal crystalline structure. The signal corresponded to a bending vibration of O–Ca–O was detected in the fingerprint region of the FTIR spectroscopy. The effects of various independent parameters such as contact time, pH, initial RB5 concentration and CaO2 dosage on decolorization were investigated. The results of the study showed that pH, initial dye concentration and the CaO2 amounts have significant effects on removal of the RB5. The optimum pH was determined 7 for the removal of RB5 by CaO2. 2.0 g CaO2 was found to be sufficient for the removal of 300 mg/L RB5 with 96.93% removal efficiency. Also 82.8% chemical oxygen demand (COD) removal efficiency from simulated textile wastewater (STW) was obtained by 2.0 g CaO2. The results of the present study showed that the CaO2 can be used as an environmentally friendly and low-cost oxidant for effective removal of reactive textile dyes.

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Van Cuong Nguyen ◽  
Quoc Hue Pho

An adsorbent called chitosan coated magnetic hydroxyapatite nanoparticles (CS-MHAP) was prepared with the purpose of improvement for the removal of Ni2+ions and textile dye by coprecipitation. Structure and properties of CS-MHAP were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and vibrating sample magnetometer (VSM). Weight percent of chitosan was investigated by thermal gravimetric analysis (TGA). The prepared CS-MHAP presents a significant improvement on the removal efficiency of Ni2+ions and reactive blue 19 dye (RB19) in comparison with chitosan and magnetic hydroxyapatite nanoparticles. Moreover, the adsorption capacities were affected by several parameters such as contact time, initial concentration, adsorbent dosage, and initial pH. Interestingly, the prepared adsorbent could be easily recycled from an aqueous solution by an external magnet and reused for adsorption with high removal efficiency.


2019 ◽  
Vol 3 (3) ◽  
pp. 91 ◽  
Author(s):  
Abdullah Al Mamun Sakib ◽  
Shah Md. Masum ◽  
Jan Hoinkis ◽  
Rafiqul Islam ◽  
Md. Ashraful Islam Molla

CuO/ZnO composites are synthesized using a simple mechanochemical combustion method. X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and Fourier transform infrared (FTIR) are used to characterize the prepared oxides. X-ray diffraction reveals that the prepared CuO/ZnO exhibit a wurtzite ZnO crystal structure and the composites are composed of CuO and ZnO. The strong peaks of the Cu, Zn, and O elements are exhibited in the EDX spectrum. The FTIR spectra appear at around 3385 cm−1 and 1637 cm−1, caused by O–H stretching, and 400 cm−1 to 590 cm−1, ascribable to Zn–O stretching. The photocatalytic performances of CuO/ZnO nanocomposites are investigated for the degradation of methylene blue (MB) aqueous solution in direct solar irradiation. The degradation value of MB with 5 wt % CuO/ZnO is measured to be 98%, after 2 h of solar irradiation. The reactive •O2− and •OH radicals play important roles in the photodegradation of MB. Mineralization of MB is around 91% under sunlight irradiation within 7 h. The photodegradation treatment for the textile wastewater using sunlight is an easy technique—simply handled, and economical. Therefore, the solar photodegradation technique may be a very effective method for the treatment of wastewater instead of photodegradation with the artificial and expensive Hg-Xe lamp.


Author(s):  
I Wayan Koko Suryawan ◽  
Qomarudin Helmy ◽  
Suprihanto Notodarmojo ◽  
Riska Pratiwi ◽  
Iva Yenis Septiariva

Reactive Black 5 (RB5) is one of the dyes used in textile industries in Indonesia. However, the high color content can interferewith the condition of water bodies if not treated. This waste treatment process is usually treated with biological treatmentprocesses. Biological processing often used is the MBBR unit and activated sludge. This study aims to determine the RB5dye’s bio-sorption efficiency using MBBR processing and activated sludge. MBBR processing and activated sludge consistof seeding, acclimatization, and running stages. This research was carried out using a real textile wastewater approach byadding 100 mg/L RB5 and adding 1000 mg/L starch solution. The processing results of the seeding stage indicate increasingin biomass. The acclimatization stage with 50% and 75% of wastewater indicates increased biomass and color removal.The RB5 color removal efficiency results in the MBBR unit and activated sludge show 41% and 84% values. The MBBRprocessing shows fluctuations each time where the desorption process occurs in the color removal. For this reason, the ozonepre-treatment process is conducted in the MBBR unit. The integrated pre-treatment with MBBR results show the samefluctuation as the previous processing with a color removal efficiency of 43% with a color removal efficiency of 43%.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1786
Author(s):  
Carla Queirós ◽  
Chen Sun ◽  
Ana M. G. Silva ◽  
Baltazar de Castro ◽  
Juan Cabanillas-Gonzalez ◽  
...  

The development of straightforward reproducible methods for the preparation of new photoluminescent coordination polymers (CPs) is an important goal in luminescence and chemical sensing fields. Isophthalic acid derivatives have been reported for a wide range of applications, and in addition to their relatively low cost, have encouraged its use in the preparation of novel lanthanide-based coordination polymers (LnCPs). Considering that the photoluminescent properties of these CPs are highly dependent on the existence of water molecules in the crystal structure, our research efforts are now focused on the preparation of CP with the lowest water content possible, while considering a green chemistry approach. One- and two-dimensional (1D and 2D) LnCPs were prepared from 5-aminoisophthalic acid and Sm3+/Tb3+ using hydrothermal and/or microwave-assisted synthesis. The unprecedented LnCPs were characterized by single-crystal X-ray diffraction (SCRXD), powder X-ray diffraction (PXRD), Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM), and their photoluminescence (PL) properties were studied in the solid state, at room temperature, using the CPs as powders and encapsulated in poly(methyl methacrylate (PMMA) films, envisaging the potential preparation of devices for sensing. The materials revealed interesting PL properties that depend on the dimensionality, metal ion, co-ligand used and water content.


2006 ◽  
Vol 39 (4) ◽  
pp. 626-629
Author(s):  
M. Jayaprakasan ◽  
V. Kannan ◽  
P. Ramasamy

X-ray powder diffraction is an established method for the qualitative identification of crystalline materials and their quantitative analysis. The new generation of X-ray diffraction systems are based on expensive digital/embedded control technology and computer interfaces. Yet many laboratories use conventional manual-controlled systems withXYstrip-chart recorders. Since the output spectrum is a strip chart (hard copy), raw data, essential for structural and qualitative analysis, are not readily available for further analysis. Upgrading to modern computerized diffractometers is very expensive. The proposed automation design described here is intended to enable the conventional diffractometer user to collect, store and analyze data quickly. The design also improves the resolution by five times compared with the conventional setup. For the automation, a PC add-on card has been designed to control and collect the timing and intensity counts from the conventional X-ray diffractometer, and suitable software has been developed to collect, process and present the X-ray diffraction data for both qualitative and quantitative analysis. Moreover, a major advantage of this design is that it does not warrant any physical modification of the hardware of the conventional setup; it is simply an extension to enhance the performance of collecting raw data with a higher resolution at desired intervals/timings.


Author(s):  
Nesrine Jaouabi ◽  
Wala Medfai ◽  
Marouan Khalifa ◽  
Rabia Zaghouani ◽  
Hatem Ezzaouia

The titanium dioxide (TiO2) purity is very important for the TiO2-based applications making essential the impurities density reduction. In this study, we propose an efficient purification process of TiO2 powder in order to reduce impurities. The low-cost proposed approach is based on an iterative gettering (IG) process combining three main steps: (1) a porous TiO2 sacrificial layer formation (p-TiO2), (2) a rapid thermal annealing (RTA) of p-TiO2 powder in an infrared oven at 950°C under air permitting the residual impurities diffusion to the porous layer surface and (3) etching in acid solution to remove the porous layer. Effect of the proposed gettering process on purification efficiency was evaluated by different characterization techniques such as the transmission electron microscopy (TEM), the energy dispersive x-ray spectroscopy (EDX), the UV–Visible-NIR spectroscopy, the X-ray diffraction (XRD) and atomic absorption spectroscopy (AAS). The obtained results showed the efficient removal of metal impurities, such as Cu, Al, P, and Fe confirming the efficiency of the process improving the purity from 89% to 99.96%.


Resources ◽  
2018 ◽  
Vol 7 (4) ◽  
pp. 63
Author(s):  
Khalil Ibrahim ◽  
Mohammad Moumani ◽  
Salsabeela Mohammad

A combined process is proposed for the utilization of local kaolin to produce alumina particles. The applied process is made in two stages: calcination at 700 °C with sodium chloride and leaching with sulfuric followed by hydrochloric acids. The optimal extraction efficiency can be obtained when the conditions are as follows: leaching temperature is at 140 °C, leaching time is 3 h 45 min and concentration of sulfuric acid is 40 wt.%. The results show that the purity of alumina reaches 79.28%, which is suitable for the production of aluminum metal. It is evident that this method of extraction of alumina from the kaolin ash is practical and feasible. The structural and morphological properties of the calcined microcrystalline powder was characterized by X-ray diffraction and scanning electron microscope (SEM).


2021 ◽  
Author(s):  
Airidas Korolkovas ◽  
Alexander Katsevich ◽  
Michael Frenkel ◽  
William Thompson ◽  
Edward Morton

X-ray computed tomography (CT) can provide 3D images of density, and possibly the atomic number, for large objects like passenger luggage. This information, while generally very useful, is often insufficient to identify threats like explosives and narcotics, which can have a similar average composition as benign everyday materials such as plastics, glass, light metals, etc. A much more specific material signature can be measured with X-ray diffraction (XRD). Unfortunately, XRD signal is very faint compared to the transmitted one, and also challenging to reconstruct for objects larger than a small laboratory sample. In this article we analyze a novel low-cost scanner design which captures CT and XRD signals simultaneously, and uses the least possible collimation to maximize the flux. To simulate a realistic instrument, we derive a formula for the resolution of any diffraction pathway, taking into account the polychromatic spectrum, and the finite size of the source, detector, and each voxel. We then show how to reconstruct XRD patterns from a large phantom with multiple diffracting objects. Our approach includes a reasonable amount of photon counting noise (Poisson statistics), as well as measurement bias, in particular incoherent Compton scattering. The resolution of our reconstruction is sufficient to provide significantly more information than standard CT, thus increasing the accuracy of threat detection. Our theoretical model is implemented in GPU (Graphics Processing Unit) accelerated software which can be used to assess and further optimize scanner designs for specific applications in security, healthcare, and manufacturing quality control.


2021 ◽  
Author(s):  
Wenjing Jiang ◽  
Zhenlin Jiang ◽  
Xin Fan ◽  
Min Zhu

Abstract Bacterial cellulose (BC)decomposes easily and the carbon residue rate is low. These factors critically restrict its application in fabricating cellulosic carbon materials. Therefore, in this paper, a simple and facile method to improve the BC carbon yield is proposed based on the stretching orientation of BC. By controlling the degree of BC deformation, the orientation and crystallinity of the BC can be adjusted, thereby sensitively affecting the graphitization degree and carbon yield of carbonized BC. Samples were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), Raman scattering, and low-field nuclear magnetic resonance (LNMR). The results indicated that when the pre-stretched strain was 40%, the crystallinity and graphitization degree of BC improved, and the carbon yield increased significantly in comparison to that of untreated BC. Thus, a low-cost, facile, and environmentally friendly method of increasing the carbon yield of BC was developed in this study.


Author(s):  
Mohammad Akter Hossain ◽  
Md. Nazmul Kayes ◽  
Md. Mufazzal Hossain

The nanoparticles of ZnO (n-ZnO) have been synthesized by a sol-gel method and characterized by UV-visible and FTIR spectroscopy, scanning electron microscopy (SEM), energy dispersive X-Ray spectrometry (EDX) and powder X-ray diffractometry (XRD). Precursor of n-ZnO particles were prepared via a non-aqueous route, which was calcined at 500oC. These particles were then deposited on a glass substrate for adsorption and photodegradation of a typical textile dye, Remazol Red R (RRR). Especially, the high surface to volume ratio of nanoparticles has appealed much attention to use these particles both as an adsorbent and a photocatalyst. A comparative study was carried out between n-ZnO and a commercially available ZnO (c-ZnO) to investigate the removal efficiency of RRR from its aqueous solution under different conditions. The removal efficiency has been optimized by varying several operating variables and the highest performance has been obtained with 0.115 g/slide of ZnO and 0.5 × 10-4 M aqueous solution of RRR under sunlight irradiation. It is important to note that the use of the films of ZnO in the presence of solar light makes it suitable for recycling and causes no secondary environmental pollution.


Sign in / Sign up

Export Citation Format

Share Document