Flux Behavior and Quality of Effluent from a Poultry Processing Plant Treated by Membrane Bioreactor

2014 ◽  
Vol 10 (1) ◽  
pp. 51-57 ◽  
Author(s):  
Heather M. Nelson ◽  
Rakesh K. Singh ◽  
Ramesh Y. Avula ◽  
Romeo T. Toledo

Abstract Membrane bioreactor (MBR) provided with spiral wound modules of polyacrylonitrile ultrafiltration membranes was used to treat the wastewater obtained from primary and secondary processing operations of a poultry plant. The membrane bioreactor consisted of 3 tanks; an aerobic bioreactor, anoxic settling tank, and a third tank from which a permeate was drawn across ultrafiltration membranes for final discharge to a municipal sewer or for reuse in the processing of raw product. The Cleaning and backflush schedules were conducted to determine the best regimen for maximum permeate flux and for their effect on retention times in each of the biological treatment tanks. Continuous operation of MBR for 24 h period with no backflushing resulted in flux decay that led to a substantial change in retention times. The best operating cycle was found to be 1 h filtration followed by 120 s backflush or 20 min filtration followed by 20 s backflush. Significant reduction in particle size, COD and BOD (>90%) and reduction of microbial load by 4 – log levels in MBR effluent made it fit for reuse.

Author(s):  
Amr M. Abdelkader ◽  

Greywater is the major part of water consumption in houses. Greywater should be treated to complying with the specifications for several purposes such as toilet flush, landscaping irrigation, and agriculture. The treatment efficiency of both MBR and RBC systems was investigated by using a verified mathematical model. The simulation program GPS-X (version 6.0) was used to simulate both MBR and RBC systems. The simulation model for biological treatment for both MBR and RBC systems is based on Activated Sludge Model 1 (ASM1). The experimental data for model calibration and verification for the MBR system were taken from experimental work done at Tubitak, Marmara Research Center, Turkey ATASOY. As well as the RBC proposed model was verified also by using RBC experimental results for a pilot plant according to BABAN. The RBC pilot plant consists of three units, The first is the RBC unit, the second unit is the settling tank and the last unit is the disinfection tank. The results of the MBR plant showed that the removal efficiencies of the greywater were: 95% for COD; 95% for BOD5; 96% for TKN; 92% for NH4+ and 99% for TSS. Whereas, the results of the RBC show that, The BOD efficiency removal was ranged between about 93.0 to 96.0 %, and for the total SS removal was ranged between 84.0 to 95.0 %. The MBR system provides complete nitrification and suspended solid removal. The RBC system provides less nitrification process and suspended solid removal. The effluent of the rotating biological contactors units for the greywater could be reused after filtration and disinfection with minimal cost of operation. The effluent of the membrane bioreactor unit needs only disinfection before reuse.


2008 ◽  
Vol 2 (1) ◽  
pp. 1 ◽  
Author(s):  
Dr. Gashem Najafpour ◽  
Punita Nook Naidu ◽  
Azlina Harun Kamaruddin

Biological treatment using attached growth on a rotating biological contactor(RBC) was implemented for wastewater from poultry industries, which containsa high level of organic compounds due to the slaughtering, rendering of bonesand fats, and plucking processes. The wastewater mostly consists of proteins,blood, fat and feathers. Nutrients available in the wastewater may enhance thegrowth of microorganisms, thus, it allows biological treatment to be usedeffectively. On the other hand, there are problems associated with biologicaltreatment processes such as nutrients promoting algae growth. The controlvariables for the attached growth in RBC were wastewater detention time, effectivesurface for attached growth, disc submerged level in the wastewater basin, shaftrotation for aeration, pH control and supplementary nutrients. The attachedgrowth resulted to high COD refPoval. The best treatment was obtained after 24hours with 29 % disc submergence level. The effective surface area for cellgrowth was 10.7 m2 using 60 discs mounted on a shaft. The microorganismused for the attached microbial growth was Saccharomyces cerevisiae. The shaftwas rotating at 11 rpm. The treatment was improved with the addition of 1 v/vof 0.1 molar sodium hydroxide solution to the wastewater for controlling pH. A91 % COD removal was obtained with RBC operating at optimum conditions,with a DO concentration of 3.98 mg/l.Key words: Rotating biological contactors, Aerobic treatment, Poultry processing wastewater,Saccharomyces cereuisiae,Attached growth.


2017 ◽  
Vol 76 (7) ◽  
pp. 1796-1804 ◽  
Author(s):  
Konstantinos Azis ◽  
Charalampos Vardalachakis ◽  
Spyridon Ntougias ◽  
Paraschos Melidis

The aim of this study was to assess the efficacy and effluent quality of a pilot-scale intermittently aerated and fed, externally submerged membrane bioreactor (MBRes) treating municipal wastewater. The effluent quality of the MBRes was evaluated regarding system ability to comply with the Greek legislative limits for restricted and unrestricted wastewater reuse. The average permeate flux was 13.9 L m−2 h−1, while the transmembrane pressure remained above the level of −110 mbar. Experimental data showed that biochemical oxygen demand, chemical oxygen demand, total nitrogen, PO43−- P and total suspended solids removal efficiencies were 97.8, 93.1, 89.6, 93.2 and 100%, respectively, whereas turbidity was reduced by 94.1%. Total coliforms and Escherichia coli were fully eliminated by ultrafiltration and disinfection methods, such as chlorination and ultraviolet radiation. In agreement with the Greek legislation (Joint Ministerial Decree 145116/11) and the guidelines recommended for the Mediterranean countries, the disinfected effluent of the MBRes system can be safely reused directly for urban purposes.


1994 ◽  
Vol 57 (10) ◽  
pp. 887-892 ◽  
Author(s):  
A. S. ABU-RUWAIDA ◽  
W. N. SAWAYA ◽  
B. H. DASHTI ◽  
M. MURAD ◽  
H.A. AL-OTHMAN

The effect of processing procedures and overall environmental and hygienic conditions on the microbiological quality and safety of chicken carcasses was studied in a modern processing plant on two separate days. The level of microorganisms on chicken carcasses was assessed by a neck-skin “maceration” method. Carcasses were heavily contaminated by different types of organisms, including indicator organisms (total aerobics, Enterobacteriaceae, coliforms and Escherichia coli) and pathogens (e.g., Salmonella, Campylobacter and Staphylococcus aureus). Microbial levels varied during processing, but the highest levels were detected after scalding and defeathering. Microbial levels did not change during vent opening or evisceration. Spray washing after evisceration did not reduce levels of bacteria. No substantial change occurred in bacteria levels during air-chilling, packaging and cold-storage; however, the finished product was heavily contaminated. In the freshly processed carcasses, mean counts (log colony forming units [CFU]/g neck-skin) of aerobic bacteria Enterobacteriaceae, coliforms, E. coli, Campylobacter and S. aureus were 6.6, 4.5, 4.1, 3.6, 5.2 and 2.7 on the first sampling day, and 6.5, 4.6, 4.9, 3.6,4.7 and 4.1 on the second day. Salmonella was present in all birds examined, including those coming directly from the farm. Major serotypes detected on dressed carcasses were Salmonella ohio, Salmonella enteritidis, Salmonella paratyphi and Salmonella krefeld.


2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Samita Maharjan ◽  
Binod Rayamajhee ◽  
Vijay Singh Chhetri ◽  
Samendra P. Sherchan ◽  
Om Prakash Panta ◽  
...  

AbstractPoultry meat can be contaminated by different types of microorganisms during processing in processing plant. The microbiological quality of chicken carcasses and along with processing steps and environmental condition was analyzed in this study in an ISO 22000:2005 certified poultry processing plant of Kathmandu. Standard plate count method was applied for the enumeration and detection of total mesophilic bacteria, total coliform, total faecal coliform, Staphylococcus load along with selected pathogens like Salmonella spp., S. aureus, Escherichia coli, Clostridium perfringens, and Listeria spp. in chicken meat at four processing step (evisceration, final washing, frozen and market). It was observed that the level of microbial load decreased with subsequent processing phases in poultry processing plant where high level of bacteria were reduced during final washing and frozen phase. After processing poultry meat in an ISO 22000:2005 certified meat processing plant, total aerobic mesophilic count, total coliform count, total faecal coliform count, total Staphylococcus count were decreased from 6.92 to 4.45 log CFU/g, 3.49 to 2.19 log CFU/g, 2.41 to nil log CFU/g, and 3..43 to 1.99 log CFU/g respectively. Pathogenic bacteria like Salmonella spp., C. perfringens, and Listeria spp. were absent in chicken meat at the fourth processing step. Prevalence of E. coli was reduced from 37.4% to 10.2%, whereas S. aureus was decreased from 18.57% to 17.1%. It was concluded that the final washing and freezing steps were the Critical Control Point (CCP) to control microbial hazards in poultry processing phase.


2016 ◽  
Vol 8 (15) ◽  
pp. 37-47
Author(s):  
Sri Moertinah ◽  
Misbachul Moenir

This study aims to create a pilot project for wastewater treatment wig industry with biological activated sludge technology to applied in the industry. Design criteria for the pilot project are the influent COD ≤ 900 mg/l, MLSS = 3,000 mg/l, 30-hours residence time. DO ≥ 2 mg/l and flow 10 m3/day. Implementation of a pilot project initiated by seeding aerobic microbes and microbial adaptation to proceed with wastewater to be treated. The trial results showed that the pilot project % COD reduction ranged from 73.2% - 91% and the result is not much different from the results of laboratory-scale research about 89.7% and the quality  of the effluent is already fullfill the standard of industrial waste water wig required by the Central Java Provincial Regulation No. 5 of 2012. The calculation of operating cost of activated sludge biological treatment which includes labor costs, electricity costs, equipment maintenance costs, expenses and other nutrients obtained the price of  Rp. 2972/m3 or Rp. 742.99/wig.ABSTRAKPenelitian ini bertujuan untuk membuat pilot project pengolahan air limbah industri rambut palsu dengan sistem lumpur aktif yang diterapkan di industri. Kriteria desain pilot project tersebut adalah COD influen ≤ 900 mg/l, MLSS = 3.000 mg/l, waktu tinggal 30 jam DO≥2 mg/l  dan debit air limbah 10 m3/hari. Pelaksanaan pilot project dimulai dengan seeding mikroba aerob dan dilanjutkan dengan adaptasi mikroba dengan air limbah yang akan diolah. Hasil uji coba pilot project menunjukkan bahwa % penurunan COD berkisar antara 73,2% - 91% dan hasil ini tidak berbeda jauh dengan hasil penelitian skala laboratorium sekitar 89,7% dan kualitas air limbah hasil pengolahan sudah memenuhi baku mutu air limbah industri rambut palsu yang dipersyaratkan oleh Peraturan Daerah Provinsi Jawa Tengah No 5 tahun 2012. Dari hasil perhitungan biaya operasional pengolahan biologis lumpur aktif yang meliputi biaya tenaga kerja, biaya listrik, biaya perawatan peralatan, biaya nutrien dan lainnya diperoleh harga sebesar Rp. 2972/m3  atau Rp. 742,99/wig.   Kata kunci : air limbah industri rambut palsu, pilot project, sistem lumpur aktif


Membranes ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 354
Author(s):  
Jaime A. Arboleda Mejia ◽  
Jorge Yáñez-Fernandez

In this study, fresh orange prickly pear juice (Opuntia spp.) was clarified by a cross-flow microfiltration (MF) process on a laboratory scale. The viability of the process—in terms of productivity (permeate flux of 77.80 L/h) and the rejection of selected membranes towards specific compounds—was analyzed. The quality of the clarified juice was also analyzed for total antioxidants (TEAC), betalains content (mg/100 g wet base), turbidity (NTU) and colorimetry parameters (L, a*, b*, Croma and H). The MF process permitted an excellent level of clarification, reducing the suspended solids and turbidity of the fresh juice. In the clarified juice, a decrease in total antioxidants (2.03 TEAC) and betalains content (4.54 mg/100 g wet basis) was observed as compared to the fresh juice. Furthermore, there were significant changes in color properties due to the effects of the L, a*, b*, C and h° values after removal of turbidity of the juice. The turbidity also decreased (from 164.33 to 0.37 NTU).


Animals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 68
Author(s):  
Martina Zappaterra ◽  
Paolo Zambonelli ◽  
Cristina Schivazappa ◽  
Nicoletta Simoncini ◽  
Roberta Virgili ◽  
...  

Protected Designation of Origin (PDO) dry-cured hams production is greatly dependent on raw meat quality. This study was performed to identify genetic markers associated with the quality of dry-cured ham. Carcass traits of 229 heavy pigs belonging to three commercial genetic lines were registered (weight, EUROP classification). Phenotypic traits (Semimembranosus muscle ultimate pH, ham weight and lean meat content, adsorbed salt) of the corresponding thighs, undergone PDO ham process in three different plants, were measured, using a fast and non-invasive technology. Green ham weight and lean meat percentage influenced the estimated salt content and the weight loss during salting, even if the processing plant greatly affected the variability of the measured ham traits. The genomic data were obtained with the GeneSeek Genomic Profiler (GGP) 70k HD Porcine Array, using the slaughter day and the sex of the animals in the statistical analyses. The phenotypic traits were associated with the genotypes through GenAbel software. The results showed that 18 SNPs located on nine porcine chromosomes were found to be associated with nine phenotypic traits, mainly related to ham weight loss during salting. New associations were found between markers in the genes Neural Precursor Cell Expressed Developmentally Down-Regulated 9 (NEDD9, SSC7), T-Cell Lymphoma Invasion and Metastasis 2 (TIAM2, SSC1), and the ham quality traits. After validation, these SNPs may be useful to improve the quality of thighs for the production of PDO dry-cured hams.


Sign in / Sign up

Export Citation Format

Share Document