scholarly journals Comparative Study between Membrane Bioreactor MBR and Rotating Biological Contactors RBC for Greywater Treatment

Author(s):  
Amr M. Abdelkader ◽  

Greywater is the major part of water consumption in houses. Greywater should be treated to complying with the specifications for several purposes such as toilet flush, landscaping irrigation, and agriculture. The treatment efficiency of both MBR and RBC systems was investigated by using a verified mathematical model. The simulation program GPS-X (version 6.0) was used to simulate both MBR and RBC systems. The simulation model for biological treatment for both MBR and RBC systems is based on Activated Sludge Model 1 (ASM1). The experimental data for model calibration and verification for the MBR system were taken from experimental work done at Tubitak, Marmara Research Center, Turkey ATASOY. As well as the RBC proposed model was verified also by using RBC experimental results for a pilot plant according to BABAN. The RBC pilot plant consists of three units, The first is the RBC unit, the second unit is the settling tank and the last unit is the disinfection tank. The results of the MBR plant showed that the removal efficiencies of the greywater were: 95% for COD; 95% for BOD5; 96% for TKN; 92% for NH4+ and 99% for TSS. Whereas, the results of the RBC show that, The BOD efficiency removal was ranged between about 93.0 to 96.0 %, and for the total SS removal was ranged between 84.0 to 95.0 %. The MBR system provides complete nitrification and suspended solid removal. The RBC system provides less nitrification process and suspended solid removal. The effluent of the rotating biological contactors units for the greywater could be reused after filtration and disinfection with minimal cost of operation. The effluent of the membrane bioreactor unit needs only disinfection before reuse.

2014 ◽  
Vol 10 (1) ◽  
pp. 51-57 ◽  
Author(s):  
Heather M. Nelson ◽  
Rakesh K. Singh ◽  
Ramesh Y. Avula ◽  
Romeo T. Toledo

Abstract Membrane bioreactor (MBR) provided with spiral wound modules of polyacrylonitrile ultrafiltration membranes was used to treat the wastewater obtained from primary and secondary processing operations of a poultry plant. The membrane bioreactor consisted of 3 tanks; an aerobic bioreactor, anoxic settling tank, and a third tank from which a permeate was drawn across ultrafiltration membranes for final discharge to a municipal sewer or for reuse in the processing of raw product. The Cleaning and backflush schedules were conducted to determine the best regimen for maximum permeate flux and for their effect on retention times in each of the biological treatment tanks. Continuous operation of MBR for 24 h period with no backflushing resulted in flux decay that led to a substantial change in retention times. The best operating cycle was found to be 1 h filtration followed by 120 s backflush or 20 min filtration followed by 20 s backflush. Significant reduction in particle size, COD and BOD (>90%) and reduction of microbial load by 4 – log levels in MBR effluent made it fit for reuse.


Author(s):  
B. A. Sivak ◽  
A. V. Protasov ◽  
L. A. Smirnov

The removal of slag from melt surface of hot metal and steel ladles is a necessary condition to provide a deep desulphurization and dephosphorization of hot metal and steel in the process of their processing. A review of methods of slag skimming presented, mainly based on slag mechanical shoveling and its removal out of ladles by vacuum sucking. It was shown, that manipulators design for the slag skimming working instrument moving depends on the production scale, mass of the processed heats, amount and properties of the slag to be removed, production process intensity and ecological requirements. Peculiarities of designs and technical parameters of machines for slag skimming presented, designed by Irkutsk plant of heavy machinery, Scientific and Production Enterprise n.a. M.I. Platov, VNIIMETMASH, Kuznetsk and Novolipetsk steel plants. Technological methods of control of slag composition and physical properties considered, first of all of viscosity and fluidity, which have significant effect on selection of a method of slag skimming. Advantages and drawbacks of actions, aimed at more complete slag removal from metal surface by a scraper noted including bath blowing off by an inert gas, liquid slag tapping into am intermediate settling tank following its removal into a slag bowl. In case of satisfactory fluidity it is possible to slag removal by vacuum sucking, which at the same time promoted the melt degassing. Work done in this area abroad noted. Methods of vacuum slag removal developed in the USA and Japan described.


1982 ◽  
Vol 14 (6-7) ◽  
pp. 429-442
Author(s):  
I L Bogert

A one-year experimental program conducted at Edgewater, New Jersey, U.S.A. evaluated the concept of providing secondary treatment by the installation of rotating biological contactors (RBC's) in modified primary sedimentation tanks. A primary tank was divided horizontally into two zones separated by an intermediate floor. Four RBC's were placed in the upper zone. The lower zone provided secondary sedimentation. High rate primary sedimentation was provided to remove grit and trash without removing substantial portions of BOD and SS. The experimental program funded by the U.S. EPA and the Borough of Edgewater was conducted over a full year at different loads. The system proved to be an effective secondary treatment process with little difference in treatment efficiency between summer and winter conditions.


1993 ◽  
Vol 28 (10) ◽  
pp. 33-41
Author(s):  
Jes la Cour Jansen ◽  
Bodil Mose Pedersen ◽  
Erik Moldt

Influent and effluent data from about 120 small wastewater treatment plants (100 - 2000 PE) have been collected and processed. Seven different types of plants are represented. The effluent quality and the treatment efficiency have been evaluated. The most common type of plant is mechanical/biological treatment plants. Some of them are nitrifying and some are also extended for chemical precipitation of phosphorus. Constructed wetlands and biological sandfilters are also represented among the small wastewater treatment plants.


2000 ◽  
Vol 41 (1) ◽  
pp. 69-72 ◽  
Author(s):  
S.Ç. Ayaz ◽  
I. Akca

The constructed wetland is a low-cost technology to control environmental pollution. The system is especially suitable for small settlements. An innovative constructed wetland technology is described in this paper. A pilot plant was used to assess the performance of the system. The experimental system consists of two serial connected tanks that settled up with fillers and Cyperus as treatment media. Wastewater is recycled periodically upward and downward between the two tanks. The treatment performance was monitored in different loading conditions in a one-year period. The average COD removal efficiency of 90% was observed at 122 g COD/m2.day average loading conditions. Other average removal values in the same conditions are as follows: suspended solid 95%, TKN 77%, total nitrogen 61%, PO4-P 39%. The land requirement for this system will be 0.82 m2 per capita when applying as full-scale system.


1999 ◽  
Vol 40 (4-5) ◽  
pp. 293-301 ◽  
Author(s):  
Bruno B. Levine ◽  
Kapal Madireddi ◽  
Valentina Lazarova ◽  
Michael K. Stenstrom ◽  
Mel Suffet

Organic and trace organic performance data for ultrafiltration (UF), nanofiltration (NF) and reverse osmosis (RO) at the Lake Arrowhead water reclamation pilot plant are analyzed to determine the treatment efficiency of these processes in an indirect potable reuse design. Four organic parameters were studied: dissolved organic carbon (DOC), ultra-violet absorbance at 254 nm (UV-254), SUVA and base neutral analysis (BNA). UF and NF removed the larger compounds from the influent, but had no significant impact on the base neutral fraction with the exception of sterols. The RO process removed DOC and UV-absorbance compounds from the effluent to their respective detection limits. Base neutral compounds were significantly removed by RO, leaving at extremely low concentrations small molecular weight compounds, indicating indirect potable reuse is technically feasible.


2006 ◽  
Vol 54 (11-12) ◽  
pp. 207-214 ◽  
Author(s):  
B. Rezania ◽  
J.A. Oleszkiewicz ◽  
N. Cicek

An anaerobic submerged membrane bioreactor was coupled with a novel hydrogen delivery system for hydrogenotrophic denitrification of municipal final effluent containing nitrate. The biological treatment unit and hydrogen delivery unit were proven successful in removing nitrate and delivering hydrogen, respectively. Complete hydrogen transfer resulted in reducing nitrate below detectable levels at a loading of 0.14 kg N m−3 d−1. The produced water met all drinking water guidelines except for color and organic carbon. However, the organic carbon was removed by 72% mostly by membrane rejection. To reduce the organic carbon and color of the effluent, post treatment of the produced water is required.


2021 ◽  
Vol 6 (1) ◽  
pp. 101-112
Author(s):  
Sharjeel Waqas ◽  
Muhammad Roil Bilad ◽  
Zakaria B Man

Biological processes are extensively used for wastewater treatment because of low organic footprint, economically feasible, and high treatment efficiency. Rotating biological contactors (RBC), an attached growth biological process offers advantage of low operating cost, simple configuration and structure, reduced bionomical footprint and thus has been extensively employed for organics and nitrogen removal. In this study, RBC was used for the treatment of synthetic domestic wastewater operating at high hydraulic and organic loading rate to demonstrate the biological performance. The results showed that the RBC achieved a treatment efficiency for COD, ammonium, TN and turbidity of 70.2%, 95.2%, 70%, and 78.9 %, respectively. The efficient nitrogen removal and increased nitrate concentration signify the presence of nitrifying bacteria which actively degrade the nitrogen compounds through the nitrification process. Thus, this system is a sound alternative for both domestic and industrial wastewater treatment for decentralized applications.


Sign in / Sign up

Export Citation Format

Share Document