Development of a Novel Kinetic Model for Cocoa Fermentation Applying the Evolutionary Optimization Approach

2018 ◽  
Vol 14 (5-6) ◽  
Author(s):  
Pablo A. López-Pérez ◽  
Jaime A. Cuervo-Parra ◽  
Víctor José Robles-Olvera ◽  
Guadalupe Del C Rodriguez Jimenes ◽  
Victor H. Pérez España ◽  
...  

AbstractTraditional Mexican cocoa fermentation performed in batch was studied by applying kinetic modelling with experimental validation. Similar microbiological behaviour was observed up to 60 h, with a temperature increase at 72 h that remained constant (50 °C) until 156 h. Metabolite-production kinetics (ethanol and acetic acid) from degradable mucilage (glucose) was explored. Exploration involved applying different combinations of unstructured growth models, in order to consider the effect of temperature when predicting the concentration of metabolites in these microorganisms. Two methods were used to optimize model parameters: the Levenberg–Marquardt optimization approach and Genetic Algorithms (GAs). GAs which could be used to scale up the fermentation process indicated the applicability of this model for predicting fermentation quality. The maximum specific rate average for μmax and saturation constant (Ks) were 0.0961 h−1 and 1.4 mg/g m.s., respectively. The results obtained indicate the expediency of this technique for future application in the design and control of batch fermentation.

2021 ◽  
Vol 11 (15) ◽  
pp. 6998
Author(s):  
Qiuying Li ◽  
Hoang Pham

Many NHPP software reliability growth models (SRGMs) have been proposed to assess software reliability during the past 40 years, but most of them have focused on modeling the fault detection process (FDP) in two ways: one is to ignore the fault correction process (FCP), i.e., faults are assumed to be instantaneously removed after the failure caused by the faults is detected. However, in real software development, it is not always reliable as fault removal usually needs time, i.e., the faults causing failures cannot always be removed at once and the detected failures will become more and more difficult to correct as testing progresses. Another way to model the fault correction process is to consider the time delay between the fault detection and fault correction. The time delay has been assumed to be constant and function dependent on time or random variables following some kind of distribution. In this paper, some useful approaches to the modeling of dual fault detection and correction processes are discussed. The dependencies between fault amounts of dual processes are considered instead of fault correction time-delay. A model aiming to integrate fault-detection processes and fault-correction processes, along with the incorporation of a fault introduction rate and testing coverage rate into the software reliability evaluation is proposed. The model parameters are estimated using the Least Squares Estimation (LSE) method. The descriptive and predictive performance of this proposed model and other existing NHPP SRGMs are investigated by using three real data-sets based on four criteria, respectively. The results show that the new model can be significantly effective in yielding better reliability estimation and prediction.


Author(s):  
Thomas Mainka ◽  
David Weirathmüller ◽  
Christoph Herwig ◽  
Stefan Pflügl

Abstract Saline wastewater contaminated with aromatic compounds can be frequently found in various industrial sectors. Those compounds need to be degraded before reuse of wastewater in other process steps or release to the environment. Halophiles have been reported to efficiently degrade aromatics, but their application to treat industrial wastewater is rare. Halophilic processes for industrial wastewater treatment need to satisfy certain requirements: a continuous process mode, low operational expenditures, suitable reactor systems and a monitoring and control strategy. The aim of this review is to provide an overview of halophilic microorganisms, principles of aromatic biodegradation, and sources of saline wastewater containing aromatics and other contaminants. Finally, process examples for halophilic wastewater treatment and potential process monitoring strategies are discussed. To further illustrate the significant potential of halophiles for saline wastewater treatment and to facilitate development of ready-to-implement processes, future research should focus on scale-up and innovative process monitoring and control strategies.


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 478
Author(s):  
Gjylije Hoti ◽  
Fabrizio Caldera ◽  
Claudio Cecone ◽  
Alberto Rubin Pedrazzo ◽  
Anastasia Anceschi ◽  
...  

The cross-linking density influences the physicochemical properties of cyclodextrin-based nanosponges (CD-NSs). Although the effect of the cross-linker type and content on the NSs performance has been investigated, a detailed study of the cross-linking density has never been performed. In this contribution, nine ester-bridged NSs based on β-cyclodextrin (β-CD) and different quantities of pyromellitic dianhydride (PMDA), used as a cross-linking agent in stoichiometric proportions of 2, 3, 4, 5, 6, 7, 8, 9, and 10 moles of PMDA for each mole of CD, were synthesized and characterized in terms of swelling and rheological properties. The results, from the swelling experiments, exploiting Flory–Rehner theory, and rheology, strongly showed a cross-linker content-dependent behavior. The study of cross-linking density allowed to shed light on the efficiency of the synthesis reaction methods. Overall, our study demonstrates that by varying the amount of cross-linking agent, the cross-linked structure of the NSs matrix can be controlled effectively. As PMDA βCD-NSs have emerged over the years as a highly versatile class of materials with potential applications in various fields, this study represents the first step towards a full understanding of the correlation between their structure and properties, which is a key requirement to effectively tune their synthesis reaction in view of any specific future application or industrial scale-up.


2018 ◽  
Vol 108 (04) ◽  
pp. 221-227
Author(s):  
T. Donhauser ◽  
L. Baier ◽  
T. Ebersbach ◽  
J. Franke ◽  
P. Schuderer

Die Kalksandsteinherstellung weist aufgrund prozesstechnisch und zeitlich divergierender Teilprozesse einen hohen Planungs- sowie Steuerungsaufwand auf. Durch Einsatz eines simulationsgestützten Optimierungsverfahrens kann diese Komplexität bewältigt werden. Um bei hoher Lösungsqualität eine Laufzeit zu erreichen, die einen operativen Einsatz des Verfahrens gestattet, wird auf Basis einer vorangegangenen Studie ein Dekompositionsansatz implementiert und dessen Eignung durch Testläufe validiert.   Calcium silicate masonry production requires a great deal of planning and control due to the fact that subprocesses vary in terms of process technology and time. To overcome this complexity, a simulation-based optimization approach is applied. As a short runtime that allows the method to be used operationally and yet still offers a high quality of solution is crucial, a decomposition approach is implemented on the basis of a previous study and its suitability is validated by means of test runs.


Processes ◽  
2018 ◽  
Vol 6 (8) ◽  
pp. 126 ◽  
Author(s):  
Lina Aboulmouna ◽  
Shakti Gupta ◽  
Mano Maurya ◽  
Frank DeVilbiss ◽  
Shankar Subramaniam ◽  
...  

The goal-oriented control policies of cybernetic models have been used to predict metabolic phenomena such as the behavior of gene knockout strains, complex substrate uptake patterns, and dynamic metabolic flux distributions. Cybernetic theory builds on the principle that metabolic regulation is driven towards attaining goals that correspond to an organism’s survival or displaying a specific phenotype in response to a stimulus. Here, we have modeled the prostaglandin (PG) metabolism in mouse bone marrow derived macrophage (BMDM) cells stimulated by Kdo2-Lipid A (KLA) and adenosine triphosphate (ATP), using cybernetic control variables. Prostaglandins are a well characterized set of inflammatory lipids derived from arachidonic acid. The transcriptomic and lipidomic data for prostaglandin biosynthesis and conversion were obtained from the LIPID MAPS database. The model parameters were estimated using a two-step hybrid optimization approach. A genetic algorithm was used to determine the population of near optimal parameter values, and a generalized constrained non-linear optimization employing a gradient search method was used to further refine the parameters. We validated our model by predicting an independent data set, the prostaglandin response of KLA primed ATP stimulated BMDM cells. We show that the cybernetic model captures the complex regulation of PG metabolism and provides a reliable description of PG formation.


2017 ◽  
Vol 81 (2) ◽  
pp. 308-315 ◽  
Author(s):  
Vijay K. Juneja ◽  
Abhinav Mishra ◽  
Abani K. Pradhan

ABSTRACT Kinetic growth data for Bacillus cereus grown from spores were collected in cooked beans under several isothermal conditions (10 to 49°C). Samples were inoculated with approximately 2 log CFU/g heat-shocked (80°C for 10 min) spores and stored at isothermal temperatures. B. cereus populations were determined at appropriate intervals by plating on mannitol–egg yolk–polymyxin agar and incubating at 30°C for 24 h. Data were fitted into Baranyi, Huang, modified Gompertz, and three-phase linear primary growth models. All four models were fitted to the experimental growth data collected at 13 to 46°C. Performances of these models were evaluated based on accuracy and bias factors, the coefficient of determination (R2), and the root mean square error. Based on these criteria, the Baranyi model best described the growth data, followed by the Huang, modified Gompertz, and three-phase linear models. The maximum growth rates of each primary model were fitted as a function of temperature using the modified Ratkowsky model. The high R2 values (0.95 to 0.98) indicate that the modified Ratkowsky model can be used to describe the effect of temperature on the growth rates for all four primary models. The acceptable prediction zone (APZ) approach also was used for validation of the model with observed data collected during single and two-step dynamic cooling temperature protocols. When the predictions using the Baranyi model were compared with the observed data using the APZ analysis, all 24 observations for the exponential single rate cooling were within the APZ, which was set between −0.5 and 1 log CFU/g; 26 of 28 predictions for the two-step cooling profiles also were within the APZ limits. The developed dynamic model can be used to predict potential B. cereus growth from spores in beans under various temperature conditions or during extended chilling of cooked beans.


2021 ◽  
Author(s):  
Peter J. Gawthrop ◽  
Michael Pan ◽  
Edmund J. Crampin

AbstractRenewed interest in dynamic simulation models of biomolecular systems has arisen from advances in genome-wide measurement and applications of such models in biotechnology and synthetic biology. In particular, genome-scale models of cellular metabolism beyond the steady state are required in order to represent transient and dynamic regulatory properties of the system. Development of such whole-cell models requires new modelling approaches. Here we propose the energy-based bond graph methodology, which integrates stoichiometric models with thermo-dynamic principles and kinetic modelling. We demonstrate how the bond graph approach intrinsically enforces thermodynamic constraints, provides a modular approach to modelling, and gives a basis for estimation of model parameters leading to dynamic models of biomolecular systems. The approach is illustrated using a well-established stoichiometric model of E. coli and published experimental data.


2011 ◽  
Vol 403-408 ◽  
pp. 3758-3762
Author(s):  
Subhajit Patra ◽  
Prabirkumar Saha

In this paper, two efficient control algorithms are discussed viz., Linear Quadratic Regulator (LQR) and Dynamic Matrix Controller (DMC) and their applicability has been demonstrated through case study with a complex interacting process viz., a laboratory based four tank liquid storage system. The process has Two Input Two Output (TITO) structure and is available for experimental study. A mathematical model of the process has been developed using first principles. Model parameters have been estimated through the experimentation results. The performance of the controllers (LQR and DMC) has been compared to that of industrially more accepted PID controller.


Sign in / Sign up

Export Citation Format

Share Document