Antibacterial Activity Inhibition after the Degradation of Flumequine by UV/H2O2

Author(s):  
Caio Rodrigues da Silva ◽  
Milena Guedes Maniero ◽  
Susanne Rath ◽  
José Roberto Guimarães

AbstractFlumequine is a broad-spectrum antibacterial agent of the quinolone class widely used as veterinary drug in food-producing animals. It is considered as pseudo-persistent compound continuously introduced into the environment and its presence in the environment may contribute to the development of drug resistant bacterial strains. In this study antibacterial activity removal during flumequine degradation by UV/H

Author(s):  
Festus O. Taiwo ◽  
Craig A. Obafemi ◽  
David A. Akinpelu A. Akinpelu

Aims: This studies aims at the synthesis of new heterocyclic systems and study its biological and pharmacological properties. Objective: This study was designed to synthesized some quinoxaline-2,3-dione with sulfonamide moiety, characterize the synthesized compounds, and study the antimicrobial properties of the synthesized compounds on some bacterial strains. Materials and Methods: Six quinoxaline-6-sulfonohydrazone derivatives were synthesized by reacting quinoxaline-6-sulfonohydrazine with some substituted benzaldehydes and ketones. The compounds were tested for their potential antibacterial properties. Results: All the test compounds possessed promising antibacterial property against a panel of bacterial strains used for this study. The MIC values exhibited by these compounds ranged between 0.0313 and 0.250 mg/mL. Among the compounds tested, compound 2 showed appreciable antibacterial activity. Discussion and Conclusion: The study concluded that all the compounds exhibited appreciable bactericidal effects towards all the bacterial strains, particularly, compound 2 This is an indication that such compounds possessing broad spectrum activities will be useful in formulating antimicrobial compounds which could be used to treat infections caused by pathogens that are now developing resistance against the available antibiotics.


Author(s):  
Nidhi Sharma ◽  
Arti Singh ◽  
Ruchika Sharma ◽  
Anoop Kumar

Aim: The aim of the study was to find out the role of auranofin as a promising broad spectrum antibacterial agent. Methods: In-vitro assays (Percentage growth retardation, Bacterial growth kinetics, Biofilm formation assay) and In-silico study (Molegro virtual docker (MVD) version 6.0 and Molecular operating environment (MOE) version 2008.10 software). Results: The in vitro assays have shown that auranofin has good antibacterial activity against Gram positive and Gram negative bacterial strains. Further, auranofin has shown synergistic activity in combination with ampicillin against S. aureus and B. subtilis whereas in combination with neomycin has just shown additive effect against E. coli, P. aeruginosa and B. pumilus. In vivo results have revealed that auranofin alone and in combination with standard drugs significantly decreased the bioburden in zebrafish infection model as compared to control. The molecular docking study have shown good interaction of auranofin with penicillin binding protein (2Y2M), topoisomerase (3TTZ), UDP-3-O-[3- hydroxymyristoyl] N-acetylglucosaminedeacetylase (3UHM), cell adhesion protein (4QRK), β-lactamase (5CTN) and arylsulphatase (1HDH) enzyme as that of reference ligand which indicate multimodal mechanism of action of auranofin. Finally, MTT assay has shown non-cytotoxic effect of auranofin. Conclusion: In conclusion, auranofin in combination with existing antibiotics could be developed as a broad spectrum antibacterial agent; however, further studies are required to confirm its safety and efficacy. This study provides possibility of use of auranofin apart from its established therapeutic indication in combination with existing antibiotics to tackle the problem of resistance.


Author(s):  
R. Cabrera-Contreras ◽  
R. Morelos-Ramírez ◽  
J. P. Quiróz-Ríos ◽  
D. Muñoz-Quiróz

Essential oils (EOs) are commonly used in food industry, due that they possess antioxidative and antimicrobial properties. There are few essential oils that have been used in medicine, due to its potent antibacterial activity against intrahospital pathogens. OEO has experimentally shown potent antibacterial effect on nosocomial Gram-positive bacteria, therefore it can be very useful in hospital environments, where there are many bacterial pathogens, which are the etiological agents of nosocomial infections and most of them are resistant to several antibiotics. Objective: The aim of this study was to determine antimicrobial effect of OEO on most frequent bacterial intrahospital pathogens: MRSA, MRSE comparatively to selected ATCC bacterial reference strains. Methods: This experimental study investigates the antibacterial action of oregano (Origanum vulgare) essential oil (OvEO) on two human pathogens: Staphylococcus aureus (SA) and Staphylococcus epidermidis (SE) Here, we used OEO against one of the most prominent antibiotic-resistant bacterial strains: methicillin-resistant SA (MRSAmecA+ = Meticillin Resistant SA and mecA- = Meticillin Resistance SA ), methicillin-resistant SE (MRSEmecA+ = Meticillin Resistance Staphylococcus epidermidis mecA+) and reference strains: S. aureus ATCC 700699, S. epidermidis ATCC 359845 and E. coli ATCC 25922. Bactericidal effects of the OEO on these bacteria were mainly evaluated using undiluted and four serial dilutions in coconut oil (CCO) l: 1:10, 1:100, 1:200, 1:400. Results: OEO, undiluted and 4 serial dilutions showed potent antibacterial activity against all strains tested. In conclusion, this OEO could be used as an alternative in medicine. The ability of OEO to inhibit and kill clinical Multi-Drug-Resistant (MDR): MRSA and MRSE strains, highlights it´s potential for use in the management of drug-resistant MDR infections in hospitals wards.


2022 ◽  
pp. 269-288
Author(s):  
Ayesha Kanwal ◽  
Zeeshan Ahmad Bhutta ◽  
Ambreen Ashar ◽  
Ashar Mahfooz ◽  
Rizwan Ahmed ◽  
...  

Human mortality due to drug-resistant infections is becoming more prevalent in our society. Antibiotics are impotent due to abuse and/or misuse, leading to new, more expensive, and more effective medicines and treatments. Therefore, it causes many short-term and long-term side effects in the patient. On the other hand, nanoparticles have exhibited antibacterial activity against various pathogens due to their small size and ability to destroy cells by various mechanisms. Unlike antibiotics for the treatment of patients' diseases and infections, nanomaterials provide an exciting way to limit the growth of microorganisms due to infections in humans. This has led to the development of a number of nanoparticles as active antibacterial agents. Therefore, the authors have carefully reviewed the recent developments in the use of nanomaterials for antibacterial applications and the mechanisms that make them an effective alternate antibacterial agent.


1963 ◽  
Vol 1 (8) ◽  
pp. 29-30

Methenamine mandelate (Mandelamine - Warner), a combination of methenamine and mandelic acid, is promoted as a broad-spectrum antibacterial agent that can be used against chronic or recurrent urinary infections without the appearance of resistant strains. In the urine, the drug yields formaldehyde and mandelic acid, both of which act only in the urine and not at all in the tissues of the urinary tract. Mandelic acid has less antibacterial effect than formaldehyde, but causes some acidification of the urine. Each component requires a pH of 5. 5 or less in the urine for even moderate antibacterial activity, and a supplementary acidifying agent is usually necessary.


Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 477
Author(s):  
Aiganym Abduraimova ◽  
Anara Molkenova ◽  
Assem Duisembekova ◽  
Tomiris Mulikova ◽  
Damira Kanayeva ◽  
...  

To date, Ag-based nanomaterials have demonstrated a high potential to overcome antibiotic resistance issues. However, bare Ag nanomaterials are prone to agglomeration in the biological environment, which results in a loss of antibacterial activity over time. Furthermore, it is still challenging to collect small-sized Ag nanomaterials right after the synthesis process. In this study, spherical-shaped Ag nanoparticles (NPs) (~6–10 nm) were attached on the surface of cetyltrimethylammonium bromide (CTAB)-loaded mesoporous silica nanoparticles (MSNs) (~100–110 nm). Antibacterial activity tests suggested that the obtained nanocomposite can be used as a highly efficient antibacterial agent against both Gram-negative and Gram-positive bacterial strains. The minimum inhibitory concentration (MIC) recalculated to pure Ag weight in nanocomposite was found to be ~1.84 µg/mL (for Escherichia coli) and ~0.92 µg/mL (for Staphylococcus aureus)—significantly smaller compared to values reported to date. The improved antibacterial activity of the prepared nanocomposite can be attributed to the even distribution of non-aggregated Ag NPs per volume unit and the presence of CTAB in the nanocomposite pores.


2020 ◽  
Vol 1 (1) ◽  
pp. 27-36
Author(s):  
Jendri Mamangkey

The present study was conducted aiming to isolate and characterize endophytic bacterial isolates with antibacterial ability, phosphate solubilization, and proteolytic activity from rhizomes of the Zingiberaceae family (Etlingera sp., Globba patens, Globba pendula, and Zingiber multibracteata). Nineteen bacterial isolates were obtained from Zingiberaceae rhizomes with isolate codes of EZS27, EZS18, EZS19, EZS25, EZS16, EZS08, EZS09, EZS13, EZS20, EZS14, EZS10, EZS11, EZS03, EZS05, EZS06, EZS43, EZS45, EZS47, and EZS28. The screening of the endophytes for antibacterial activity was done through the paper disc method. Four bacterial isolates presented antibacterial activities. EZS06 isolate inhibited the growth of EPEC (11 mm), P. vulgaris ATCC 13315 (10 mm), and L. monocytogenes BTCC B693 (9 mm). Also, EZS20 isolate inhibited the growth of S. aureus ATCC 29213 (17 mm), EZS28 isolate inhibited MRSA ATCC 43300 (8.6 mm), and EZS45 isolate inhibited S.  Epidermidis ATCC 12228 (9 mm). The EZS19, EZS03, and EZS16 isolates dissolved the phosphate most effectively. Eight isolates (EZS19, EZS47, EZS27, EZS25, EZS09, EZS20, EZS45, and EZS06) showed the best protease activity. In general, our results showed that the endophytic bacterial strains can be used as a new and useful antibacterial agent since it showed antibacterial activity and chemical diversity. Furthermore, it also has the potential for exploitation in a wide variety of medical, agricultural, and industrial areas.


2014 ◽  
Vol 19 ◽  
pp. 40-51 ◽  
Author(s):  
M. Chandrasekaran ◽  
Venugopalan Venkatesalu ◽  
G. Adaikala Raj ◽  
S. Krishnamoorthy

The present study was conducted to evaluate the antibacterial activity of different organic solvent increasing polarity viz., hexane, chloroform, ethyl acetate, acetone and methanol extracts of Ulva fasciata (Chlorophyceae) were collected from Kanniyakummari, Gulf of Mannar biosphere Reserve, Tamilnadu, India. Marine green algae extracts of U. fasciata against multi-drug resistant standard and clinical bacterial strains viz., Bacillus subtilis, Streptococcus pyogenes, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Salmonella typhimurium, Vibrio cholerae, Shigella flexneri, Proteus mirabilis and P. vulgaris. The ethyl acetate extracts of U. fasciata showed highest antibacterial activity against all the bacterial strains tested. The mean zone of inhibition produced by the extracts in disc diffusion assays were ranged from 7.1 mm to 15.0 mm. The Minimum Inhibitory Concentrations (MIC) were between 125 μg/ml and 500 μg/ml, while the Minimum Bactericidal Concentrations (MBC) were between 250 μg/ml and 1000 μg/ml. The highest mean of zone inhibition (15.0 mm) and lowest MIC (125 μg/ml) and MBC (250 μg/ml) values were observed in ethyl acetate extract of U. fasciata against B. subtilis. The ethyl acetate extract of the U. fasciata showed the presence of phytochemicals, terpenoids, tannins and phenolic compounds in U. fasciata than the other solvents extracts. The present results of the ethyl acetate extract of U. fasciata can be used as an antibacterial substance for the treatment of multi drug resistant bacterial infections


Author(s):  
Rongxing Chen ◽  
Huarui Xue ◽  
Yazhou Xu ◽  
Tianwei Ma ◽  
Yuan Liu ◽  
...  

Background: Methicillin-resistant S. aureus (MRSA) has already tormented humanity and the environment for a long time and is responsible for many difficult-to-treat infections. Unfortunately, there are limited therapeutic options, and MRSA isolates with complete resistance to vancomycin, the first-line drug for the treatment of MRSA infections, have already emerged in recent years. Moxifloxacin retained activity against mutant bacterial strains with various levels of fluoroquinolones resistance and had a lower potential to select for resistant mutants. Isatin is a versatile structure, and its derivatives are potent inhibitors of many enzymes and receptors. The fluoroquinolone-isatin derivatives demonstrated excellent antibacterial activity against both drug-sensitive and drug-resistant organisms. The structure-activity relationship elucidated that incorporation of 1,2,3-triazole moiety into the C-7 position of fluoroquinolone skeleton was favorable to the antibacterial activity. Accordingly, fluoroquinolone derivatives with isatin and 1,2,3-triazole fragments at the side chain on the C-7 position are promising candidates to fight against drug-resistant bacteria. Objective: To explore more active moxifloxacin derivatives to fight against MRSA and enrich the structure-activity relationships. Methods: The synthesized moxifloxacin derivatives 7a-i and 14a-f were evaluated for their antibacterial activity against a panel of MRSA strains by means of standard two-fold serial dilution method. Results: The majority of the synthesized moxifloxacin derivatives were active against most of the tested MRSA strains with MIC values in a range of 1 to 64 μg/mL. The mechanistic investigations revealed that topoisomerase IV was one of the targets for antibacterial activity. Conclusion: These derivatives are useful scaffolds for the development of novel topoisomerase IV inhibitors.


2021 ◽  
Vol 30 (2) ◽  
pp. 67-71
Author(s):  
Ghada S.M. Abd el wahab

Background: Silver nanoparticles (AgNPs) have recently been extensively investigated because of their superior physical, chemical, and biological characteristics, and their superiority is primarily due to the size, shape, composition, crystallinity, and structure of AgNPs compared to their bulk forms. Objective: The current study aimed to investigate the antibacterial activity of silver nanoparticles (AgNPs) synthesized intracellular by using standard strain Bacillus subitilis ATCC 6633 against reference strains Escherichia coli ATCC 2592 and Staphylococcus aureus ATCC 29737. Results: The synthesized AgNPs showed potent antibacterial activities against the two tested bacterial strains with inhibition zones ranged from 42 -52mm and MIC 27.2 µg / ml. The silver nanoparticles were characterized with particle size ≃ 100 nm and zeta potential -19. There was deformation in both tested strains upon treatment with AgNPs which was observed by Scanning Electron Microscopy (SEM). Conclusion: The results indicated that AgNPs could be used as an effective antibacterial agent.


Sign in / Sign up

Export Citation Format

Share Document