scholarly journals The evaluation of corrosion properties of coated materials by utilization of EIS

2016 ◽  
Vol 60 (2) ◽  
pp. 35-40
Author(s):  
J. Brezinová ◽  
J. Koncz ◽  
D. Draganovská ◽  
A. Guzanová

Abstract The paper presents results of research aimed at determining the corrosive properties of steel with cathode metal coating in selected corrosive environments. The corrosion properties of the tin coated steel were evaluated using electrochemical impedance spectroscopy and potentiodynamic tests. For realised measurements, distilled water, 0.5 mol dm−3 NaCl solution, 0.1 mol dm−3 NaCl solution and SARS, which simulates acid rain were used as corrosive solutions. Both corrosion methods are suitable for diagnosing corrosion properties of steel with metal coatings.

2017 ◽  
Vol 64 (4) ◽  
pp. 365-370 ◽  
Author(s):  
Sebahattin Kirtay

Purpose The purpose of this paper is to investigate the corrosion resistance of SiO2-Al2O3 coating on mild steel. Design/methodology/approach SiO2-Al2O3 was coated using sol-gel method, and electrochemical measurements were applied to assess the performance of the coated steel. Findings The main conclusion is that SiO2-Al2O3-coated specimens acquired a higher corrosion resistance than that of uncoated specimen. icorr values of the coated specimens were between 12 and 14 times smaller than those of uncoated specimen. The coated specimens exhibited a higher Rcor value at electrochemical impedance spectroscopy analysis. The high values of Rcor and low values of CPEdl observed within the SiO2-Al2O3-coated samples imply an improved anti-corrosion capability. Originality/value In this work, there are three points of originality. First, steel specimens were coated with ormosil-based solution by applying sol-gel dip coating method. Second, both SiO2 and Al2O3 coatings were applied simultaneously at a considerably low temperature, i.e. 200 °C. Finally, the performance of the coated materials against wet corrosion was improved significantly.


RSC Advances ◽  
2016 ◽  
Vol 6 (52) ◽  
pp. 46479-46486 ◽  
Author(s):  
Xiaoling Liu ◽  
Yawei Shao ◽  
Mingshun Liu ◽  
Shougang Chen ◽  
Fuhui Wang ◽  
...  

The anti-corrosion properties of the defective zinc phosphate/epoxy coatings under cathodic protection (CP) in a 3.5% NaCl solution were evaluated by localized electrochemical impedance spectroscopy (LEIS) and scanning electrochemical microscopy.


2006 ◽  
Vol 530-531 ◽  
pp. 111-116
Author(s):  
M.C.E. Bandeira ◽  
F.D. Prochnow ◽  
Isolda Costa ◽  
César V. Franco

Nd-Fe-B magnets present outstanding magnetic properties. However, due to their low corrosion resistance, their applications are limited to non-corrosive environments. Nowadays, significant efforts are underway to increase the corrosion resistance of these materials, through the use of coatings. Herein are presented the results of a study on the corrosion resistance of Nd-Fe-B magnets coated with polypyrrole (PPY). The electrochemical behavior of coated and uncoated magnets has been studied by Electrochemical Impedance spectroscopy (EIS) in synthetic saliva. The results were compared to previous investigations, which were carried out under similar conditions, in Na2SO4 and NaCl solutions. In sulphate solution, the corrosion resistance of the PPY-coated magnet was 3 times larger (1600 .cm2) than that of uncoated magnet (500 .cm2). In NaCl solution, however, the corrosion resistance of coated and uncoated magnets were very similar (250 .cm2). In synthetic saliva, both the uncoated and coated magnets presented good corrosion performance (1940 .cm2). Such behavior can be attributed to the phosphate ions in saliva, which play a role as corrosion inhibitor, producing phosphating, at least partially, of the magnet surface. The PPY-coated magnets presented a strong diffusional control from moderate to low frequencies, caused by the polypyrrole film. The thicker PPY film increased the corrosion resistance of the magnet in synthetic saliva.


Coatings ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 598
Author(s):  
Wenwei Li ◽  
Jun-e Qu ◽  
Zhiyong Cao ◽  
Hairen Wang

The colored films were successfully prepared on the 304 stainless steel surfaces in coloring solutions with different NiSO4 contents. The purpose of this study was to investigate the effects of NiSO4 in the coloring solution on the coloring performance of 304 stainless steel and corrosion resistance of the obtained colored film in NaCl solution. The coloring rate was determined from coloring potential-time curve, and the protection properties of the color films in a 3.5% NaCl solution were characterized by potentiodynamic polarization scan, electrochemical impedance spectroscopy, and wear resistance test. The results showed that adding NiSO4 could accelerate the coloring process but brought about a negative impact on the surface’s corrosion resistance.


2014 ◽  
Vol 124 ◽  
pp. 165-175 ◽  
Author(s):  
A. Alvarez-Pampliega ◽  
T. Hauffman ◽  
M. Petrova ◽  
T. Breugelmans ◽  
T. Muselle ◽  
...  

2019 ◽  
Vol 43 (16) ◽  
pp. 6303-6313 ◽  
Author(s):  
Ambrish Singh ◽  
K. R. Ansari ◽  
M. A. Quraishi ◽  
Savas Kaya ◽  
Priyabrata Banerjee

The corrosion inhibition behavior of a naphthoxazinone derivative 1-phenyl-1,2-dihydronaphtho[1,2-e][1,3]oxazin-3-one (PNO) on J55 steel in 3.5 wt% NaCl solution saturated with carbon dioxide was evaluated using weight loss, electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization.


2011 ◽  
Vol 284-286 ◽  
pp. 1701-1704
Author(s):  
Jing Ling Ma ◽  
Jiu Ba Wen ◽  
Gao Lin Li

The corrosion behavior of Al-5Zn-0.03In and Al-5Zn-0.03Ga alloys in 3.5 % NaCl solution has been examined by electrochemical methods, scanning electron microscopy, X-ray microanalysis, electrochemical impedance spectroscopy. The results demonstrate that the alloys differ in the microstructure, corroded morphology and electrochemical properties. For Al-5Zn-0.03In alloy, the precipitates enriched in Al and Zn initiates pitting. For Al-5Zn-0.03Ga alloy, corrosion occurs more uniformly, the corrosion of the alloy occurred via the formation of a surface Ga-Al amalgam alloy. The EIS of Al-5Zn-0.03In alloy contains a capacitive loop and an inductive loop; the inductive loop can be attributed to the presence of the pitting. The EIS of Al-5Zn-0.03Ga alloy contains only a capacitive loop.


2017 ◽  
Vol 744 ◽  
pp. 380-384
Author(s):  
Hui Tong ◽  
Wen Li Han ◽  
Zhong Ping Xu ◽  
Yan Jun Zhang ◽  
Zhu Lin ◽  
...  

Electrochemical impedance spectroscopy (EIS) is a technology of nondestructive electrochemical testing. In this paper, EIS is applied to study the corrosion processes of Al-Mg coatings. In the initial 24 h of immersion in 3.5% NaCl solution, passive films of Al-Mg coatings dissolve quickly. As time passed, corrosion products increase on surface gradually, which can inhibit corrosion. After 480h of immersion, corrosion products fully cover on Al-Mg coatings’ surface. The EIS of different corrosion processes are fitted by three equivalent circuits corresponding to the three corrosion processes. In the test of open circuit potentials (OCP), OCP is instable in the initial 24 h of immersion. As immersion time goes by, OCP tends to stabilization at about -0.90 V. Measurements of scanning electron microscope (SEM) confirm the conclusions of electrochemical measurements.


Sign in / Sign up

Export Citation Format

Share Document