scholarly journals Inhibition of vitamin D analog eldecalcitol on hepatoma in vitro and in vivo

Open Medicine ◽  
2020 ◽  
Vol 15 (1) ◽  
pp. 663-671
Author(s):  
Limin Ye ◽  
Liyi Zhu ◽  
Jinglin Wang ◽  
Fei Li

AbstractHepatoma is a serious liver cancer with high morbidity and mortality. Eldecalcitol (ED-71), a vitamin D analog, is extensively used as anti-cancer agent in vitro. Hepatocellular carcinoma cell, SMMC-7721 cell lines were used in this study. Transwell assay, cell apoptosis and cell cycle detection assays were investigated after treatment with ED-71 and phosphate buffered saline (PBS) as control. Sizes of tumors were measured after ED-71 treatment in a mouse model. E-cadherin and Akt gene expressions were detected by real-time PCR (RT-PCR). The results showed that cell invasion and migration were decreased markedly after ED-71 treatment compared to control group. Cell cycle detection showed that the G2 stage was 13.18% and total S-stage was 41.16% in the ED-71 group and G2 stage: 22.88%, total S-stage: 27.34% in the control group. Cell apoptosis rate was promoted in the ED-71 group. Size of the tumors reduced more after the ED-71 treatment than the PBS treatment in mice. ED-71 markedly inhibited the expression of Akt and E-cadherin, either detected by immunohistochemistry or RT-PCR. ED-71 treatment can inhibit the hepatoma agent proliferation by increasing the E-cadherin expression and decreasing Akt expression. Therefore, these findings provide novel evidence that ED-71 can be used as an anti-hepatoma agent.

2012 ◽  
Vol 486 ◽  
pp. 84-89
Author(s):  
Yan Qiu Zhang ◽  
Bing Ye ◽  
Xi Kai Wang ◽  
Yan Yun Fu ◽  
Tao Zhang ◽  
...  

The widespread explored application of water soluble carbon nanotubes makes it important to understand their potential toxic effects on health. This study investigates the effects of phosphoryl choline grafted water soluble multi-walled carbon nanotubes (MWCNTs-PC) on human bronchial epithelial (16-HBE) cells by different cytotoxicity methods in vitro. Various concentrations of MWCNTs-PC were incubated with 16-HBE cells, the effects of cell proliferation, cell apoptosis, cell cycle and DNA damage were detected by methyl thiazolyl tetrazolium (MTT) assay, flow cytometry, single cell gel electrophoresis assay (SCGE) and micronuclear assay, respectively. Compared with the control group, there were no significant differences in the changes of cell proliferation, cell apoptosis, cell cycle and DNA damage. Within the experimental concentrations of MWCNTs-PC, no obviously cytotoxicity and DNA damage was observed on 16-HBE cells in this study.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 894-894
Author(s):  
Lina Wang ◽  
Jinfeng Liao ◽  
Wenli Feng ◽  
Xiao Yang ◽  
Shayan Chen ◽  
...  

Abstract Fbxw11, as a member of F-box proteins family, is a constituent of the SCF (Skp1-Cul1-F box) ubiquitin ligase complex. This ligase ubiquitinates specifically phosphorylated substrates and controls the degradation and half-life of key cellular regulators. So, Fbxw11 play a pivotal role in many aspects of hematopoiesis and tumorigenesis through regulating various signal transduction pathways. We found two transcript variants (Fbxw11c and Fbxw11d) in mouse bone marrow. However the role of Fbxw11 variants in the development of leukemia and the underlying mechanisms remain largely unknown. In this study, we cloned three transcript variants (Fbxw11a, Fbxw11c and Fbxw11d) to study the biological function of Fbxw11 in leukemia. In order to investigate the role of Fbxw11 variants in leukemia, we established L1210 cell lines with over-expression of Fbxw11a, Fbxw11c and Fbxw11d respectively using the lentivirus system. The effect of Fbxw11 variants on proliferation of leukemia cells in vitro was first detected. Growth curve of leukemia cells with Fbxw11a, Fbxw11c or Fbxw11d over-expression was established by cell counting. The results suggested that over-expression of Fbxw11 variants stimulated the growth of leukemia cells. Then MTT experiment was carried out to study the effect of Fbxw11 variants on leukemia cell proliferation and the results showed that Fbxw11 variants increased the proliferation of L1210 cells in vitro. To further confirm the effects of Fbxw11 variants on proliferation of leukemia cells in vivo, tumor xenografts model with over-expression of Fbxw11a, Fbxw11c and Fbxw11d in DBA/2 mice was established. Leukemia cells L1210 with over-expression of Fbxw11a, Fbxw11c and Fbxw11d respectively were transplanted into DBA/2 mice by hypodermic injection. The tumor growth curves showed that tumor growth was increased in Fbxw11 variants over-expression group compared to the control group. Mice were sacrificed on day 28 after transplantation, greater volume of the xenograft tumors were obtained from Fbxw11 variants over-expression group than control group. Therefore, Over-expression of Fbxw11 variants could increase growth of tumor in vivo. To further investigate the molecular mechanism under the effect of Fbxw11 variants on proliferation of leukemia cells, we tested the apoptosis and cell cycle of leukemia cells with Fbxw11 variants over-expression. Over-expression of Fbxw11 variants did not affect the cell apoptosis but accelerated the process of cell cycle. These results revealed that the increased cell proliferation was not due to decrease in cell apoptosis but due to increase in cell cycle. In addition, we tested the effect of Fbxw11 variants on the signal transduction by dual-luciferase reporter gene system. The results showed that over-expression of Fbxw11 variants caused the activation of NF-κB signaling pathway. In conclusion, our findings suggest that Fbxw11 variants have promoting effect on cell proliferation of leukemia cells. The effect of Fbxw11 variants on cell proliferation are due to accelerated the process of cell cycle but not decreasing in cell apoptosis. Further study demonstrated that Fbxw11 variants promote cell proliferation through activating the NF-κB signaling pathway. The important role of Fbxw11 in regulating the development of leukemia suggests that a potent rationale for developing Fbxw11 as a potential therapeutic target against leukemia. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Vol 26 (1) ◽  
Author(s):  
Zhiyuan Lu ◽  
Dawei Wang ◽  
Xuming Wang ◽  
Jilong Zou ◽  
Jiabing Sun ◽  
...  

Abstract Background More and more studies have confirmed that miRNAs play an important role in maintaining bone remodeling and bone metabolism. This study investigated the expression level of miR-206 in the serum of osteoporosis (OP) patients and explored the effect and mechanism of miR-206 on the occurrence and development of osteoporosis. Methods 120 postmenopausal women were recruited, including 63 cases with OP and 57 women without OP. The levels of miR-206 were determined by qRT-PCR technology. Spearman correlation coefficient was used to evaluate the correlation of miR-206 with bone mineral density (BMD). An ROC curve was used to evaluate the diagnostic value of miR-206 in osteoporosis. The effects of miR-206 on cell proliferation and cell apoptosis of hFOBs were measured by CCK-8 assay and flow cytometry, respectively. Luciferase reporter gene assay was used to confirm the interaction of miR-206 and the 3′UTR of HDAC4. Results Serum miR-206 had low expression level in osteoporosis patient group compared with control group. The expression level of serum miR-206 had diagnostic value for osteoporosis, and the serum miR-206 levels were positively correlated with BMD. The down-regulated miR-206 could inhibit cell proliferation and promote cell apoptosis. Luciferase analysis indicated that HDAC4 was the target gene of miR-206. Conclusions MiR-206 could be used as a new potential diagnostic biomarker for osteoporosis, and in in vitro cell experiments, miR-206 may regulate osteoblast cell proliferation and apoptosis by targeting HDAC4.


2020 ◽  
Author(s):  
Zhaoming Deng ◽  
Wei Liao ◽  
Wei Wei ◽  
Guihua Zhong ◽  
Chao He ◽  
...  

Abstract BackgroundOral squamous cell carcinoma (OSCC) has been one of the most malignant cancers in head and neck region. Anlotinib is a tyrosine kinase inhibitor targeting several receptors such as vascular endothelial growth factor receptor (VEGFR), fibroblast growth factor receptor (FGFR), platelet-derived growth factor receptor (PDGFR) and c-Kit. Here we investigated whether Anlotinib have any antitumor effect on oral cancer and tried to explore and explain the possible mechanism.MethodsData from The Cancer Genome Atlas and the Gene Expression Omnibus and Gene Expression Omnibus database was collected to analyze the relationship between the expression of vascular epithelial growth factor receptor 2 and the overall survival rate of OSCC. Oral cancer cell lines Cal-27 and SCC-25 were cultured to conduct all the experiments. In vitro experiments such as CCK-8, colony formation, cell cycle assay and cell apoptosis assay were conducted to detect cell proliferation ability and the change of cell phase and apoptosis. Proteins concerning cell cycle and cell apoptosis were visualized via western blot. α-Tubulin were visualized via immunofluorescence to detect cells undergoing mitotic catastrophe. ResultsHigher expression of VEGFR-2 was significantly related to poorer prognosis. Experiment in vitro demonstrated that cell proliferation was significantly inhibited(p<0.05) after Anlotinib administration and G2/M arrest and apoptosis were both detected in both cell lines. Cycle-related proteins promoting cell cycle progression and proteins related to cell survival were downregulated in Anlotinib group compared to the control group. Cell-death-related biomarker and phosphorylated histone 3 were upregulated in expression in Anlotinib group. Abnormal spindle apparatus was observed in cells undergoing mitotic catastrophe. ConclusionAnlotinib could exert an antitumor effect on oral cancer cells lines via apoptotic pathway and mitotic catastrophe pattern, presenting a promising potential therapy for patients with OSCC.


2019 ◽  
Vol 17 (1) ◽  
Author(s):  
Rui Li ◽  
Tianfeng Liu ◽  
Juanjuan Shi ◽  
Wenqing Luan ◽  
Xuan Wei ◽  
...  

Abstract Background Epithelial ovarian cancer (EOC) is the most lethal cancer in female genital tumors. New disease markers and novel therapeutic strategies are urgent to identify considering the current status of treatment. Receptor tyrosine kinases family plays critical roles in embryo development and disease progression. However, ambivalent research conclusions of ROR2 make its role in tumor confused and the underlying mechanism is far from being understood. In this study, we sought to clarify the effects of ROR2 on high-grade serous ovarian carcinoma (HGSOC) cells and reveal the mechanism. Methods Immunohistochemistry assay and western-blot assay were used to detect proteins expression. ROR2 overexpression adenovirus and Lentivirus were used to create ROR2 overexpression model in vitro and in vivo, respectively. MTT assay, colony formation assay and transwell assay were used to measure the proliferation, invasion and migration ability of cancer cells. Flow cytometry assay was used to detect cell apoptosis rate. Whole transcriptome analysis was used to explore the differentially expressed genes between ROR2 overexpression group and negative control group. SiRNA targeted IRE1α was used to knockdown IRE1α. Kira6 was used to inhibit phosphorylation of IRE1α. Results Expression of ROR2 was significantly lower in HGSOC tissues compared to normal fallopian tube epithelium or ovarian surface epithelium tissues. In HGSOC cohort, patients with advanced stages or positive lymph nodes were prone to express lower ROR2. Overexpression of ROR2 could repress the proliferation of HGSOC cells and induce cell apoptosis. RNA sequencing analysis indicated that ROR2 overexpression could induce unfold protein response. The results were also confirmed by upregulation of BIP and phosphorylated IRE1α. Furthermore, pro-death factors like CHOP, phosphorylated JNK and phosphorylated c-Jun were also upregulated. IRE1α knockdown or Kira6 treatment could reverse the apoptosis induced by ROR2 overexpression. Finally, tumor xenograft experiment showed ROR2 overexpression could significantly repress the growth rate and volume of transplanted tumors. Conclusions Taken together, ROR2 downregulation was associated with HGSOC development and progression. ROR2 overexpression could repress cell proliferation and induce cell apoptosis in HGSOC cells. And the underlying mechanism might be the activation of IRE1α/JNK/CHOP pathway induced by ROR2.


QJM ◽  
2020 ◽  
Vol 113 (Supplement_1) ◽  
Author(s):  
F M A Diab ◽  
N A Nassef ◽  
M S Abdelhamid ◽  
Y M K Amin

Abstract Background Doxorubicin-induced cardiotoxicity is a worldwide problem. Vitamin D is a well-known beneficial vitamin for bone growth and calcium homeostasis but recently it is also known for its cardioprotective effects. The aim of this study is to investigate the potential protective role of vitamin D on the cardiac dysfunction induced by chronic doxorubicin exposure, and to throw more light on the possible underlying mechanism (s) for such effect. Materials and Methods: 70 female Albino-rats were divided into 4 groups; control group (C), Doxorubicin-treated group (Dox): given i.p. injection of Dox in a dose of 2.5 mg/kg body weight (cumulative dose: 15 mg/kg) over 3 weeks, vitamin Dsupplemented group (Vit D): given vitamin D by oral gavage in a dose of 500 IU/kg daily, 5 days a week, also for 3 weeks and the combined Doxorubicintreated+vitamin D-supplemented group (Dox+Vit D). At the end of the experiment, ECG was recorded and in vitro isolated heart study was performed on Langendoroff preparation to measure peak tension (PT), time to peak tension (TPT), half relaxation time (HRT) and myocardial flow rate (MFR). Body and cardiac weights, plasma levels of brain naturetic peptide (BNP), cardiac troponin I (cTnI), vitamin D and total calcium and cardiac tissue heat shock protein 20, total antioxidant capacity (TAC) and malondialdehyde (MDA) were measured. Also, cardiac tissues were histopathologically assessed. Results: Dox-treated rats showed significant decrease in the final body weight (fBW), significant prolongation of the P-R interval, QRS duration, observed Q-T (Q-TO) and corrected Q-T (Q-Tc) with significant depression of the R voltage. In addition, there was a significant decrease in the in vitro heart rate, significant depression in PT, PT/LV and MFR together with significant prolongation in TPT& 3 HRT. These changes were accompanied by significant elevation of plasma BNP, cTnI and in cardiac tissue MDA and a significant decrease in plasma vit D, total calcium and cardiac tissue TAC and HSP20. Histopathological examination revealed markedly distorted muscle fibers with indistinct cell borders, bright eosinophilic cytoplasm, intra-cytoplasmic vacuoles and small pyknotic nuclei or absent nuclei, together with interstitial edema & aggregates of inflammatory cells and thick irregular collagen fibers in between the muscle fibers. Concomitant supplementation of vitamin D to the doxorubicin treated rats resulted in significant decrease in PR interval, QRS duration, MDA and significant increase PT, PT/LV, MFR, MFR/LV, plasma vitamin D, total calcium and TAC compared to the Dox treated rats to be insignificantly different from the control group. Plasma BNP and cTnI were significantly decreased while cardiac HSP20 was significantly increased compared to the Dox-treated rats, yet these parameters were still significant from the control group. Meanwhile, fBW, Q-TO and Q-Tc intervals, and TPT remained insignificantly changed from the DOX group. These findings were associated by regaining the normal collagen fiber distribution between cardiac muscle fibers with resolution of interstitial edema. Conclusion: Vitamin D supplementation can partially mitigate cardiac dysfunction induced by chronic doxorubicin by improving the cardiac antioxidant state and heat shock protein 20 level. Key words: Doxorubicin, cardiac dysfunction, vitamin D, isolated heart studies, BNP, HSP20.


Molecules ◽  
2019 ◽  
Vol 24 (8) ◽  
pp. 1549 ◽  
Author(s):  
Marta Grodzik ◽  
Jaroslaw Szczepaniak ◽  
Barbara Strojny-Cieslak ◽  
Anna Hotowy ◽  
Mateusz Wierzbicki ◽  
...  

Our previous studies have shown that diamond nanoparticles (NDs) exhibited antiangiogenic and proapoptotic properties in vitro in glioblastoma multiforme (GBM) cells and in tumors in vivo. Moreover, NDs inhibited adhesion, leading to the suppression of migration and invasion of GBM. In the present study, we hypothesized that the NDs might also inhibit proliferation and cell cycle in glioma cells. Experiments were performed in vitro with the U87 and U118 lines of GBM cells, and for comparison, the Hs5 line of stromal cells (normal cells) after 24 h and 72 h of treatment. The analyses included cell morphology, cell death, viability, and cell cycle analysis, double timing assay, and gene expression (Rb, E2F1, CycA, CycB, CycD, CycE, PTEN, Ki-67). After 72 h of ND treatment, the expression level of Rb, CycD, and CycE in the U118 cells, and E2F1, CycD, and CycE in the U87 cells were significantly lower in comparison to those in the control group. We observed that decreased expression of cyclins inhibited the G1/S phase transition, arresting the cell cycle in the G0/G1 phase in glioma cells. The NDs did not affect the cell cycle as well as PTEN and Ki-67 expression in normal cells (Hs5), although it can be assumed that the NDs reduced proliferation and altered the cell cycle in fast dividing cells.


2019 ◽  
Vol 97 (5) ◽  
pp. 589-599 ◽  
Author(s):  
Jie Yang ◽  
Fan Yu ◽  
Jinlei Guan ◽  
Tao Wang ◽  
Changjiang Liu ◽  
...  

A previous study has reported that knockdown of RING finger protein 2 (RNF2) increases the radiosensitivity of esophageal cancer cells both in vitro and in vivo. However, the effect of RNF2 knockdown on radiosensitivity in squamous cell carcinoma (SqCC) remains unknown. For this, NCI-H226 and SK-MES-1 cells were exposed to X-ray irradiation and then RNF2 levels were determined. RNF2 was knocked-down and stable transfectants were selected. Radiosensitivity, cell proliferation, apoptosis, cell cycle, and γ-H2AX foci formation were evaluated. Interaction among ataxia telangiectasia mutated protein (ATM), mediator of DNA damage checkpoint 1 (MDC1), and H2AX were examined. Xenograft models were used to explore the effect of RNF2 knockdown on radiosensitivity in vivo. The results showed that RNF2 expression was significantly increased by X-ray irradiation. RNF2 knockdown combined with X-ray irradiation markedly inhibited cell proliferation, caused cell cycle arrest at the G1 phase, and induced cell apoptosis. In addition, RNF2 knockdown enhanced the radiosensitivity of SqCC cells, inhibited irradiation-induced γ-H2AX foci formation, and impaired the interactions among ATM, MDC1, and H2AX. Furthermore, combination of RNF2 knockdown and X-ray irradiation suppressed tumor growth and promoted tumor cell apoptosis in vivo. RNF2 may be a new therapeutic target to enhance the radiosensitivity of SqCC cells in lung.


Sign in / Sign up

Export Citation Format

Share Document