Effects of Phosphoryl Choline Grafted Water Soluble Carbon Nanotubes Examined by Different Cytotoxicity Methods in 16-HEB Cells

2012 ◽  
Vol 486 ◽  
pp. 84-89
Author(s):  
Yan Qiu Zhang ◽  
Bing Ye ◽  
Xi Kai Wang ◽  
Yan Yun Fu ◽  
Tao Zhang ◽  
...  

The widespread explored application of water soluble carbon nanotubes makes it important to understand their potential toxic effects on health. This study investigates the effects of phosphoryl choline grafted water soluble multi-walled carbon nanotubes (MWCNTs-PC) on human bronchial epithelial (16-HBE) cells by different cytotoxicity methods in vitro. Various concentrations of MWCNTs-PC were incubated with 16-HBE cells, the effects of cell proliferation, cell apoptosis, cell cycle and DNA damage were detected by methyl thiazolyl tetrazolium (MTT) assay, flow cytometry, single cell gel electrophoresis assay (SCGE) and micronuclear assay, respectively. Compared with the control group, there were no significant differences in the changes of cell proliferation, cell apoptosis, cell cycle and DNA damage. Within the experimental concentrations of MWCNTs-PC, no obviously cytotoxicity and DNA damage was observed on 16-HBE cells in this study.

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 894-894
Author(s):  
Lina Wang ◽  
Jinfeng Liao ◽  
Wenli Feng ◽  
Xiao Yang ◽  
Shayan Chen ◽  
...  

Abstract Fbxw11, as a member of F-box proteins family, is a constituent of the SCF (Skp1-Cul1-F box) ubiquitin ligase complex. This ligase ubiquitinates specifically phosphorylated substrates and controls the degradation and half-life of key cellular regulators. So, Fbxw11 play a pivotal role in many aspects of hematopoiesis and tumorigenesis through regulating various signal transduction pathways. We found two transcript variants (Fbxw11c and Fbxw11d) in mouse bone marrow. However the role of Fbxw11 variants in the development of leukemia and the underlying mechanisms remain largely unknown. In this study, we cloned three transcript variants (Fbxw11a, Fbxw11c and Fbxw11d) to study the biological function of Fbxw11 in leukemia. In order to investigate the role of Fbxw11 variants in leukemia, we established L1210 cell lines with over-expression of Fbxw11a, Fbxw11c and Fbxw11d respectively using the lentivirus system. The effect of Fbxw11 variants on proliferation of leukemia cells in vitro was first detected. Growth curve of leukemia cells with Fbxw11a, Fbxw11c or Fbxw11d over-expression was established by cell counting. The results suggested that over-expression of Fbxw11 variants stimulated the growth of leukemia cells. Then MTT experiment was carried out to study the effect of Fbxw11 variants on leukemia cell proliferation and the results showed that Fbxw11 variants increased the proliferation of L1210 cells in vitro. To further confirm the effects of Fbxw11 variants on proliferation of leukemia cells in vivo, tumor xenografts model with over-expression of Fbxw11a, Fbxw11c and Fbxw11d in DBA/2 mice was established. Leukemia cells L1210 with over-expression of Fbxw11a, Fbxw11c and Fbxw11d respectively were transplanted into DBA/2 mice by hypodermic injection. The tumor growth curves showed that tumor growth was increased in Fbxw11 variants over-expression group compared to the control group. Mice were sacrificed on day 28 after transplantation, greater volume of the xenograft tumors were obtained from Fbxw11 variants over-expression group than control group. Therefore, Over-expression of Fbxw11 variants could increase growth of tumor in vivo. To further investigate the molecular mechanism under the effect of Fbxw11 variants on proliferation of leukemia cells, we tested the apoptosis and cell cycle of leukemia cells with Fbxw11 variants over-expression. Over-expression of Fbxw11 variants did not affect the cell apoptosis but accelerated the process of cell cycle. These results revealed that the increased cell proliferation was not due to decrease in cell apoptosis but due to increase in cell cycle. In addition, we tested the effect of Fbxw11 variants on the signal transduction by dual-luciferase reporter gene system. The results showed that over-expression of Fbxw11 variants caused the activation of NF-κB signaling pathway. In conclusion, our findings suggest that Fbxw11 variants have promoting effect on cell proliferation of leukemia cells. The effect of Fbxw11 variants on cell proliferation are due to accelerated the process of cell cycle but not decreasing in cell apoptosis. Further study demonstrated that Fbxw11 variants promote cell proliferation through activating the NF-κB signaling pathway. The important role of Fbxw11 in regulating the development of leukemia suggests that a potent rationale for developing Fbxw11 as a potential therapeutic target against leukemia. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Vol 26 (1) ◽  
Author(s):  
Zhiyuan Lu ◽  
Dawei Wang ◽  
Xuming Wang ◽  
Jilong Zou ◽  
Jiabing Sun ◽  
...  

Abstract Background More and more studies have confirmed that miRNAs play an important role in maintaining bone remodeling and bone metabolism. This study investigated the expression level of miR-206 in the serum of osteoporosis (OP) patients and explored the effect and mechanism of miR-206 on the occurrence and development of osteoporosis. Methods 120 postmenopausal women were recruited, including 63 cases with OP and 57 women without OP. The levels of miR-206 were determined by qRT-PCR technology. Spearman correlation coefficient was used to evaluate the correlation of miR-206 with bone mineral density (BMD). An ROC curve was used to evaluate the diagnostic value of miR-206 in osteoporosis. The effects of miR-206 on cell proliferation and cell apoptosis of hFOBs were measured by CCK-8 assay and flow cytometry, respectively. Luciferase reporter gene assay was used to confirm the interaction of miR-206 and the 3′UTR of HDAC4. Results Serum miR-206 had low expression level in osteoporosis patient group compared with control group. The expression level of serum miR-206 had diagnostic value for osteoporosis, and the serum miR-206 levels were positively correlated with BMD. The down-regulated miR-206 could inhibit cell proliferation and promote cell apoptosis. Luciferase analysis indicated that HDAC4 was the target gene of miR-206. Conclusions MiR-206 could be used as a new potential diagnostic biomarker for osteoporosis, and in in vitro cell experiments, miR-206 may regulate osteoblast cell proliferation and apoptosis by targeting HDAC4.


2019 ◽  
Vol 97 (5) ◽  
pp. 589-599 ◽  
Author(s):  
Jie Yang ◽  
Fan Yu ◽  
Jinlei Guan ◽  
Tao Wang ◽  
Changjiang Liu ◽  
...  

A previous study has reported that knockdown of RING finger protein 2 (RNF2) increases the radiosensitivity of esophageal cancer cells both in vitro and in vivo. However, the effect of RNF2 knockdown on radiosensitivity in squamous cell carcinoma (SqCC) remains unknown. For this, NCI-H226 and SK-MES-1 cells were exposed to X-ray irradiation and then RNF2 levels were determined. RNF2 was knocked-down and stable transfectants were selected. Radiosensitivity, cell proliferation, apoptosis, cell cycle, and γ-H2AX foci formation were evaluated. Interaction among ataxia telangiectasia mutated protein (ATM), mediator of DNA damage checkpoint 1 (MDC1), and H2AX were examined. Xenograft models were used to explore the effect of RNF2 knockdown on radiosensitivity in vivo. The results showed that RNF2 expression was significantly increased by X-ray irradiation. RNF2 knockdown combined with X-ray irradiation markedly inhibited cell proliferation, caused cell cycle arrest at the G1 phase, and induced cell apoptosis. In addition, RNF2 knockdown enhanced the radiosensitivity of SqCC cells, inhibited irradiation-induced γ-H2AX foci formation, and impaired the interactions among ATM, MDC1, and H2AX. Furthermore, combination of RNF2 knockdown and X-ray irradiation suppressed tumor growth and promoted tumor cell apoptosis in vivo. RNF2 may be a new therapeutic target to enhance the radiosensitivity of SqCC cells in lung.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 13-14
Author(s):  
Yang Han ◽  
Ya Zhang ◽  
Xinting Hu ◽  
Xiang Sun ◽  
Xin Wang

Introduction: Enhanced DNA damage repair effect is an important mechanism for drug-resistance in chronic lymphocytic leukemia (CLL). Moreover, the ability of cancer cells to repair under radiation or chemotherapy drug induced DNA damage also serves as one of the mechanisms for therapy resistance. It is reported that nucleolar and spindle associated protein 1 (NUSAP1), a microtubule binding protein, has been involved in DNA damage repair process and plays important roles in the development, progression, and metastasis in several types of cancer. However, its role and mechanism in the development of CLL are still unclear. Methods: Expression levels of NUSAP1 mRNA and protein in CLL cell lines and patient specimens were detected by qRT-PCR and Western blot, and Kaplan-Meier survival curve and overall survival were analyzed by log-rank test. Peripheral blood samples from de novo CLL patients and healthy volunteers were collected with informed consents at the Department of Hematology in Shandong Provincial Hospital Affiliated to Shandong University (SPHASU). Microarray datasets GSE22762 were obtained from Gene Expression Omnibus. With altering NUSAP1 expression by lentivirus-transfected cells in vitro, the effects of NUSAP1 on cell proliferation, apoptosis and cycle were detected by CCK8, Annexin V-PE /7AAD staining and PI/RNase staining respectively. Bioinformatics analysis, luciferase reporter analysis, immunoprecipitation and were applied to discern and examine the relationship between NUSAP1 and its potential targets. Results: According to clinical specimens and bioinformatics analysis, the expression level of NUSAP1 gene in samples of CLL patients was significantly increased than that of healthy donors (P<0.05) (Figure A). Besides, the results indicated that the OS of patients with highly expressed NUSAP1 was significantly worse than in patients with low expression with the statistical analysis database GSE22762. mRNA and protein expression levels of NUSAP1 were significantly higher in CLL cell lines than in PBMCs from healthy donors (Figure C). Our findings indicated that NUSAP1 knockdown notably inhibited cell proliferation when compared with the Scramble group (Figure D). Moreover, the amounts of DNA fragmentation of the apoptotic cells were remarkably increased by NUSAP1 shRNA in MEC-1 and EHEB cells when compared with the Scramble group (Figure E). In addition, after knocking down NUSAP1, MEC-1 and EHEB cells were blocked in G0/G1 phase (Figure F). Moreover, addition to fludarabine or ibrutinib with shNUSAP1 group showed enhanced cytotoxicity in CLL cells (Figure G). The differential genes were analyzed via RNA-seq between Scramble and ShNUSAP1 group. Intriguingly, annotations of gene ontology (GO) analysis indicated that NUSAP1 was closely related to biological processes including cell cycle and response to drug. Kyoto encyclopedia of genes and genomes (KEGG) analysis showed that NUSAP1 were enriched in pathways in cancer, DNA replication and cell cycle. Gene set enrichment analysis (GSEA) implicated that NUSAP1 was functionally enriched in DNA replication, cell cycle and proteasome (Figure H). Immunofluorescence showed that NUSAP1 was mainly distributed in the cell nucleus, and the expression level of RAD51 was positively correlated with the change of NUSAP1 expression (Figure I). Surppression of NUSAP1 inhibited the action of proteins in DNA damage repair pathway (Figure J). Through COIP, NUSAP1 was identified to bind with RAD51 and play an important role in DNA damage repair pathway (Figure K). Hence, NUSAP1 participates in the DNA damage repair process and enhances the drug resistance in CLL. Conclusions: This study first demonstrated that the high expression of NUSAP1 in CLL patients is associated with poor prognosis through database analysis and experiments in vitro. Interference of NUSAP1 expression led to a slower CLL cell proliferation and a higher apoptosis rate, meanwhile induced the G1 phase arrest. Collectively, our findings demonstrated that NUSAP1 contributes to DNA damage repairing by binding to RAD51 and enhances drug resistance in CLL. Therefore, NUSAP1 is expected to be a potential target for the treatment of CLL with drug-resistance. Figure 1 Disclosures No relevant conflicts of interest to declare.


Open Medicine ◽  
2020 ◽  
Vol 15 (1) ◽  
pp. 663-671
Author(s):  
Limin Ye ◽  
Liyi Zhu ◽  
Jinglin Wang ◽  
Fei Li

AbstractHepatoma is a serious liver cancer with high morbidity and mortality. Eldecalcitol (ED-71), a vitamin D analog, is extensively used as anti-cancer agent in vitro. Hepatocellular carcinoma cell, SMMC-7721 cell lines were used in this study. Transwell assay, cell apoptosis and cell cycle detection assays were investigated after treatment with ED-71 and phosphate buffered saline (PBS) as control. Sizes of tumors were measured after ED-71 treatment in a mouse model. E-cadherin and Akt gene expressions were detected by real-time PCR (RT-PCR). The results showed that cell invasion and migration were decreased markedly after ED-71 treatment compared to control group. Cell cycle detection showed that the G2 stage was 13.18% and total S-stage was 41.16% in the ED-71 group and G2 stage: 22.88%, total S-stage: 27.34% in the control group. Cell apoptosis rate was promoted in the ED-71 group. Size of the tumors reduced more after the ED-71 treatment than the PBS treatment in mice. ED-71 markedly inhibited the expression of Akt and E-cadherin, either detected by immunohistochemistry or RT-PCR. ED-71 treatment can inhibit the hepatoma agent proliferation by increasing the E-cadherin expression and decreasing Akt expression. Therefore, these findings provide novel evidence that ED-71 can be used as an anti-hepatoma agent.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
He Hu ◽  
Shanshan Li ◽  
Jianqiao Li ◽  
Chao Huang ◽  
Fang Zhou ◽  
...  

Purpose. Recent research has provided novel insight into the function of fibromodulin (FMOD) in wound healing and angiogenesis. The role of FMOD in initiation of proliferative vitreoretinopathy (PVR) has not been studied. This study investigated the effect of FMOD on human retinal pigment epithelial (RPE) cell, which plays an essential role in the progression of PVR, and the possible mechanisms. Methods. Small interfering (si) RNA-based gene transfer technology was used to decrease FMOD expression and to study its effects on RPEs in vitro. Cell Counting Kit-8 assays, transwells, and flow cytometry analysis were used to measure cell proliferation, migration, cell cycle, and apoptosis. Western blot was used to measure expression of vascular endothelial growth factor (VEGF), VEGF receptor 2 (VEGFR2), extracellular signal-related kinase 1/2 (ERK1/2), and phosphoinositide 3 kinase (PI3K/AKT). Results. After transfection of RPEs with a FMOD-specific siRNA, cell proliferation and migration were inhibited to the percentage of 65% ± 5% and 39% ± 10%, respectively, compared to the control group. Depletion of FMOD induced cell cycle arrest and apoptosis in RPE cells. Downregulation of VEGF, VEGFR2, and phosphorylated AKT (p-AKT) were detected in transfected RPEs. Conclusion. Depletion of FMOD selectively downregulated the expression of VEGF and VEGFR2 and inhibited the signaling pathway of AKT phosphorylation, which consequently inhibited the proliferation and migration of RPE Cell.


2007 ◽  
Vol 292 (3) ◽  
pp. C1204-C1215 ◽  
Author(s):  
Kamyar Zahedi ◽  
John J. Bissler ◽  
Zhaohui Wang ◽  
Anuradha Josyula ◽  
Lu Lu ◽  
...  

Expression of spermidine/spermine N1-acetyltransferase (SSAT) increases in kidneys subjected to ischemia-reperfusion injury (IRI). Increased expression of SSAT in vitro leads to alterations in cellular polyamine content, depletion of cofactors and precursors of polyamine synthesis, and reduced cell proliferation. In our model system, a >28-fold increase in SSAT levels in HEK-293 cells leads to depletion of polyamines and elevation in the enzymatic activities of ornithine decarboxylase and S-adenosylmethionine decarboxylase, suggestive of a compensatory reaction to increased polyamine catabolism. Increased expression of SSAT also led to DNA damage and G2 arrest. The increased DNA damage was primarily due to the depletion of polyamines. Other factors such as increased production of H2O2 due to polyamine oxidase activity may play a secondary role in the induction of DNA lesions. In response to DNA damage the ATM/ATR → Chk1/2 DNA repair and cell cycle checkpoint pathways were activated, mediating the G2 arrest in SSAT-expressing cells. In addition, the activation of ERK1 and ERK2, which play integral roles in the G2/M transition, is impaired in cells expressing SSAT. These results indicate that the disruption of polyamine homeostasis due to enhanced SSAT activity leads to DNA damage and reduced cell proliferation via activation of DNA repair and cell cycle checkpoint and disruption of Raf → MEK → ERK pathways. We propose that in kidneys subjected to IRI, one mechanism through which increased expression of SSAT may cause cellular injury and organ damage is through induction of DNA damage and the disruption of cell cycle.


Author(s):  
Huan Fu ◽  
Mei Liu ◽  
Jinxiu Yan ◽  
Na Zhao ◽  
Liangchao Qu

Background: Abnormal deposition of amyloid beta (Aβ) is considered the primary cause of neurocognitive disorders (NCDs). Inhibiting cytotoxicity is an important aspect of the treatment of NCDs. Stachydrine (STA) has been widely used for gynecological and cardiovascular disorders. However, whether STA has protective functions in PC12 cells treated with Aβ25–35 remains unclear. Introduction: Traditional Chinese Medicine, stachydrine (STA) is a water-soluble alkaloid of Leonurus heterophyllus, which can inhibit cell apoptosis, suppress tumor growth, maintain homeostasis of myocardial cells, and alleviate endothelial dysfunction. This study will investigate the effect of STA on inhibiting PC12 cell apoptosis induced by Aβ25-35 in an in vitro cell model of neurocognitive disorders. Methods: The differentially expressed genes (DEGs) in cells treated with STA were analyzed according to the Gene Expression Omnibus (GSE) 85871 data, and the STITCH database was used to identify the target genes of STA. PC12 cells were treated with Aβ25–35 and/or STA, an 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was performed and lactate dehydrogenase (LDH) activity was determined. The cell cycle distribution was detected by flow cytometry, and quantitative reverse transcription-polymerase chain reaction (qRT-PCR) or Western blotting were used to detect the expression of genes or proteins. Results and Discussion: GSE85871 data showed 37 upregulated and 48 downregulated genes among the DEGs affected by STA. The results from the STITCH database showed that RPS8 and EED were target genes of STA. GSE1297 analysis showed the 13 most significantly upregulated genes. STA might affect the occurrence of NCDs through the interaction of TP53 with EED and RPS8. Finally, Aβ25-35 promoted apoptosis and LDH release of PC-12 cells, arrested the cell cycle in the G2/M phase, and inhibited the expression of the RPS8, EED, Bcl-2 and P53 genes. STA could reverse the effect of Aβ25-35. Conclusion: STA may play an important role in inhibiting apoptosis induced by Aβ25-35 by targeting the RPS8 and EED genes in the NCDs model in vitro.


2007 ◽  
Vol 25 (18_suppl) ◽  
pp. 15181-15181
Author(s):  
L. Wang

15181 Background: To study the effects of gemcitabine on cell apoptosis and cell cycle of gastric cancer Methods: Gastric cancer cells were cultured with different concentrations of gemcitabine (0.001, 0.01 and 0.1μM). MTT test was performed to evaluate the cell proliferation. The cells were divided into three groups: control group (cultured in RPMI-1640) and 5-FU group ( cultured in RPMI-1640 with 5- FU) and gemcitabine group ( cultured in RPMI-1640 with Gemcitabine). Flow cytometry was performed to determine the apoptotic rate and the cell cycle phases. Morphological changes were observed by phasecontrast microscope. Results: The cell proliferation was inhibited in experiment groups treated with gemcitabine and 5-FU, compared with control groups(P<0.01). Gemcitabine can induce cell apoptosis. 0.01μM and 0.1μM gemcitabine were much more effective than 0.001μM. On the third day, S phase cells accounted for 24.5% and G2-M phase cells 0.08% in the control group, while 24.6% and 0.06%, respectively in the gemcitabine group. However, on the seventh day, those came to 20.8% and 0.41% in the control group, and 18.2% and 1. 55% in the gemcitabine group, indicating a significant change in the cell cycle ( P<0.01). Conclusions: Gemcitabine can inhibit the cell proliferation, and it maybe related to cell apoptosis. No significant financial relationships to disclose.


2020 ◽  
Vol 21 (21) ◽  
pp. 8336
Author(s):  
Ming-Min Chang ◽  
Siou-Ying Hong ◽  
Shang-Hsun Yang ◽  
Chia-Ching Wu ◽  
Chia-Yih Wang ◽  
...  

Cordycepin, a bioactive constituent from the fungus Cordyceps sinensis, could inhibit cancer cell proliferation and promote cell death via induction of cell cycle arrest, apoptosis and autophagy. Our novel finding from microarray analysis of cordycepin-treated MA-10 mouse Leydig tumor cells is that cordycepin down-regulated the mRNA levels of FGF9, FGF18, FGFR2 and FGFR3 genes in MA-10 cells. Meanwhile, the IPA-MAP pathway prediction result showed that cordycepin inhibited MA-10 cell proliferation by suppressing FGFs/FGFRs pathways. The in vitro study further revealed that cordycepin decreased FGF9-induced MA-10 cell proliferation by inhibiting the expressions of p-ERK1/2, p-Rb and E2F1, and subsequently reducing the expressions of cyclins and CDKs. In addition, a mouse allograft model was performed by intratumoral injection of FGF9 and/or intraperitoneal injection of cordycepin to MA-10-tumor bearing C57BL/6J mice. Results showed that FGF9-induced tumor growth in cordycepin-treated mice was significantly smaller than that in a PBS-treated control group. Furthermore, cordycepin decreased FGF9-induced FGFR1-4 protein expressions in vitro and in vivo. In summary, cordycepin inhibited FGF9-induced testicular tumor growth by suppressing the ERK1/2, Rb/E2F1, cell cycle pathways, and the expressions of FGFR1-4 proteins, suggesting that cordycepin can be used as a novel anticancer drug for testicular cancers.


Sign in / Sign up

Export Citation Format

Share Document