scholarly journals Effect of deposition temperature on structural, optical and electrical properties of copper bismuth sulphide (CuBiS2) thin films deposited by chemical bath deposition

2017 ◽  
Vol 35 (2) ◽  
pp. 329-334 ◽  
Author(s):  
V. Balasubramanian ◽  
P. Naresh Kumar ◽  
D. Sengottaiyan

Abstract The effect of deposition temperature on the structural, optical and electrical properties of copper bismuth sulphide (CuBiS2) thin films deposited by chemical bath deposition onto glass substrates at different deposition temperatures (40 °C, 50 °C, 60 °C and 70 °C) for 5 hours deposition time period was investigated. The obtained films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDAX) and optical absorption spectra. All deposited films were polycrystalline and had an orthorhombic structure. Their grain size had changed with deposition temperature and their compositions were nearly stoichiometric. The optical band gap value was decreased from 2.44 eV to 2.33 eV with increasing the film thickness. Electrical parameters such as mobility and type of electrical conduction were determined from the Hall effect measurements. They showed that the obtained films have n-type conductivity and mobility values of the copper bismuth sulphide (CuBiS2) films have changed with deposition temperature.

2012 ◽  
Vol 198-199 ◽  
pp. 28-31
Author(s):  
Chun Ya Li ◽  
Xi Feng Li ◽  
Long Long Chen ◽  
Ji Feng Shi ◽  
Jian Hua Zhang

Under different growth conditions, silicon Oxide (SiOx) thin films were deposited successfully on Si (100) substrates and glass substrates by plasma enhanced chemical vapor deposition (PECVD). The thickness, refractive index and growth rate of the thin films were tested by ellipsometer. The effects of deposition temperature on the structure and properties of SiOx films were studied using X ray diffraction (XRD), X ray photoelectron spectroscopy (XPS) and UV-Visible spectroscopy. The results show that the SiOx films were amorphous at different deposition temperature. The peaks of Si2p and O1s shifted to higher binding energy with temperature increasing. The SiOx films had high transmissivity at the range of 400-900nm. By analyzing the observation and data, the influence of deposition parameters on the electrical properties and interface characteristics of SiOx thin film prepared by PECVD is systematically discussed. At last, SiOx thin film with excellent electrical properties and good interface characteristic is prepared under the relatively optimum parameters.


2014 ◽  
Vol 2014 ◽  
pp. 1-4 ◽  
Author(s):  
Peijie Lin ◽  
Sile Lin ◽  
Shuying Cheng ◽  
Jing Ma ◽  
Yunfeng Lai ◽  
...  

Ag-doped In2S3(In2S3:Ag) thin films have been deposited onto glass substrates by a thermal evaporation method. Ag concentration is varied from 0 at.% to 4.78 at.%. The structural, optical, and electrical properties are characterized using X-ray diffraction (XRD), spectrophotometer, and Hall measurement system, respectively. The XRD analysis confirms the existence of In2S3and AgIn5S8phases. With the increase of the Ag concentration, the band gap of the films is decreased gradually from 2.82 eV to 2.69 eV and the resistivity drastically is decreased from ~103to5.478×10-2 Ω·cm.


2013 ◽  
Vol 20 (06) ◽  
pp. 1350058 ◽  
Author(s):  
R. E. ORNELAS-ACOSTA ◽  
S. SHAJI ◽  
D. AVELLANEDA ◽  
G. A. CASTILLO ◽  
T. K. DAS ROY ◽  
...  

In this work, we report the formation of In 6 Se 7 thin films by laser irradiation of In / Se layered structure. Indium layer was deposited on glass substrates by thermal evaporation on which selenium thin film was grown by chemical bath deposition from an aqueous solution containing 10 ml of sodium selenosulphate (0.1 M), 1.0 ml acetic acid (25%) and 70 ml distilled water during 5 min. The In / Se coated glass substrates were irradiated using a 532 nm continuous laser for 3–5 min. Structure, morphology, optical and electrical properties of the irradiated thin films were analyzed using various techniques. X-ray diffraction analysis showed that the irradiated thin films were In 6 Se 7 of monoclinic structure. X-ray photoelectron spectroscopic study on the laser irradiated samples provided uniform relative composition of In and Se in the thin films formed after laser irradiation. The morphology, optical and electrical properties of the irradiated samples were investigated. The optical band gap of the In 6 Se 7 thin films was 2.2 eV and also, the thin films were photoconductive.


2019 ◽  
pp. 1-6
Author(s):  
Nabile Edith Rodríguez-García ◽  
Felipe Adrián Vázquez-Gálvez ◽  
Fernando Estrada-Saldaña ◽  
Israel Hernández-Hernández

Antimony Sulfide (Sb2S3) thin films were prepared using the laser assisted chemical bath deposition technique. The precursors used in the chemical bath were antimony chloride and sodium thiosulfate, the deposit was made at room temperature on glass substrate, while it was irradiated with a wavelength of 532 nm of the pulsed Nd:YAG laser. In this work, we studied the effects of energy density (1.97 x 107 and 7.07 x 106 W/cm2) and the irradiation time (30, 45 and 60 min) during the deposition process on the structure and the optical and electrical properties of the antimony sulfide films. The structure, composition, and optical and electrical properties were analyzed by X-Ray Diffraction (XRD), Raman Spectroscopy and X-Ray Emitted Photoelectron Spectroscopy (XPS), UV-Vis spectroscopy and photoconductivity. The results showed that the laser assisted chemical deposition technique is an effective synthesis technique for obtaining thin films of antimony sulfide for optoelectronic applications or in solar cells.


2018 ◽  
Vol 34 (5) ◽  
pp. 2325-2331
Author(s):  
Reuben Seth Richter ◽  
A. Yaya ◽  
D. Dodoo-Arhin ◽  
B. Agyei-Tuffour ◽  
Robinson Juma Musembi ◽  
...  

In this work, the effect of indium (In) and gallium (Ga) dopants on the structural, optical and electrical properties of ZnO thin films was studied. ZnO thin films were deposited on glass substrates at 400°C using the spray pyrolysis deposition technique. X-ray diffraction (XRD) results indicated that both undoped and doped ZnO films had (002) preferred orientation. The undoped ZnO films were found to exhibit high transmittance above 80%, while indium-doped (In:ZnO) and gallium-doped (Ga:ZnO) films had transmittance above 60% and 70% respectively. From the Hall Effect measurements, doping improved the conductivity of the ZnO thin films however, In:ZnO films showed higher electrical conductivity compared to Ga:ZnO films. Electron probe microanalysis (EPMA) results were used to confirm the presence of the respective dopants in the thin film samples.


2013 ◽  
Vol 652-654 ◽  
pp. 519-522
Author(s):  
Jun Chen ◽  
Yue Hui Hu ◽  
Hong Hao Hu ◽  
Yi Chuan Chen

Transparent thin films of Sn-doped ZnO (ZnO:Sn) were deposited onto silica glass substrates by the sol–gel method. The effect of different Sn doping on the crystallinity, structural, optical and electrical properties of ZnO:Sn thin films were investigated by XRD, SEM, UV-VIS spectrophotometer and four-point probe method respectively. Among all of ZnO:Sn thin films in this paper, Sn-doped with 2 at.% exhibited the best properties, the surface demonstrate an accumulative crystallization and hexagonal structure, with a high-preferential c-axis orientation, namely an average transmittance of 90% and the resistivity of 19.6 Ω·cm.


2011 ◽  
Vol 04 (04) ◽  
pp. 401-405 ◽  
Author(s):  
W. CHER ◽  
S. YICK ◽  
S. XU ◽  
Z. J. HAN ◽  
K. OSTRIKOV

Al -doped zinc oxide (AZO) thin films are deposited onto glass substrates using radio-frequency reactive magnetron sputtering and the improvements in their physical properties by post-synthesis thermal treatment are reported. X-ray diffraction spectra show that the structure of films can be controlled by adjusting the annealing temperatures, with the best crystallinity obtained at 400°C under a nitrogen atmosphere. These films exhibit improved quality and better optical transmittance as indicated by the UV-Vis spectra. Furthermore, the sheet resistivity is found to decrease from 1.87 × 10-3 to 5.63 × 10-4Ω⋅cm and the carrier mobility increases from 6.47 to 13.43 cm2 ⋅ V-1 ⋅ s-1 at the optimal annealing temperature. Our results demonstrate a simple yet effective way in controlling the structural, optical and electrical properties of AZO thin films, which is important for solar cell applications.


2019 ◽  

Transparent conducting oxide (TCO) thin films are materials of significance for their applications in optoelectronics and sun powered cells. Fluorine-doped tin oxide (FTO) is an elective material in the advancement of TCO films. This paper reports the impact of fluorine doping on structural, optical and electrical properties of tin oxide thin films for solar cells application. The sol-gel was prepared from anhydrous stannous chloride, SnCl2 as an originator, 2-methoxyethanol as a solvent, di-ethanolamine as a preservative and ammonium fluoride as the dopant source. FTO precursor solution was formulated to obtain 0, 5, 10, 15 and 20 % doping concentration and deposited on glass substrates by means of spin coater at the rate of 2000 rpm for 40 seconds. After pre-heated at 200 oC, the samples were annealed at 600 oC for 2 h. The structural, optical and electrical characteristics of prepared films were characterized using X-ray diffraction (XRD) analysis, UV-visible spectroscopy and electrical measurement. X-ray diffraction (XRD) investigation of the films demonstrated that the films were polycrystalline in nature with tetragonal-cassiterite structure with most extraordinary pinnacle having a grain size of 17.01 nm. Doping with fluorine decreases the crystallite size. There was increment in the absorbance of the film with increasing wavelength and the transmittance was basically reduced with increasing fluorine doping in the visible region. The energy band gaps were in the range of 4.106-4.121 eV. The sheet resistance were observed to decrease as the doping percentage of fluorine increased with exception at higher doping of 15 and 20 %. In view of these outcomes, FTO thin films prepared could have useful application in transparent conducting oxide electrode in solar cell.


Crystals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1183
Author(s):  
Peiyu Wang ◽  
Xin Wang ◽  
Fengyin Tan ◽  
Ronghua Zhang

Molybdenum disulfide (MoS2) thin films were deposited at different temperatures (150 °C, 225 °C, 300 °C, 375 °C, and 450 °C) on quartz glass substrates and silicon substrates using the RF magnetron sputtering method. The influence of deposition temperature on the structural, optical, electrical properties and deposition rate of the obtained thin films was investigated by X-ray diffraction (XRD), Energy Dispersive Spectrometer (EDS), Raman, absorption and transmission spectroscopies, a resistivity-measuring instrument with the four-probe method, and a step profiler. It was found that the MoS2 thin films deposited at the temperatures of 150 °C, 225 °C, and 300 °C were of polycrystalline with a (101) preferred orientation. With increasing deposition temperatures from 150 °C to 300 °C, the crystallization quality of the MoS2 thin films was improved, the Raman vibrational modes were strengthened, the deposition rate decreased, and the optical transmission and bandgap increased. When the deposition temperature increased to above 375 °C, the molecular atoms were partially combined with oxygen atoms to form MoO3 thin film, which caused significant changes in the structural, optical, and electrical properties of the obtained thin films. Therefore, it was necessary to control the deposition temperature and reduce the contamination of oxygen atoms throughout the magnetron sputtering process.


Sign in / Sign up

Export Citation Format

Share Document