Characterization of hydrogen in a high strength aluminum alloy

2020 ◽  
Vol 62 (9) ◽  
pp. 962-964
Author(s):  
Xiao Yang ◽  
Xianfu Luo ◽  
Xianfeng Zhang ◽  
Jieming Chen ◽  
Lingqing Gao

Abstract High strength aluminum alloys have a face-centered cubic structure and it is not easy to form hydrides due to the extremely low solubility of hydrogen. Therefore, it is very difficult to test and characterize hydrogen in the high-strength aluminum alloys. In this work, the penetration of hydrogen and the distribution of hydrogen near the crack tip in the highstrength aluminum alloy were analyzed by time of flight secondary ion mass spectrometry (TOF-SIMS). Meanwhile, the test method of trace H in highstrength aluminum alloy was investigated by using TOF-SIMS technology.

Coatings ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 4
Author(s):  
Dmitry V. Dzhurinskiy ◽  
Stanislav S. Dautov ◽  
Petr G. Shornikov ◽  
Iskander Sh. Akhatov

In the present investigation, the plasma electrolytic oxidation (PEO) process was employed to form aluminum oxide coating layers to enhance corrosion resistance properties of high-strength aluminum alloys. The formed protective coating layers were examined by means of scanning electron microscopy (SEM) and characterized by several electrochemical techniques, including open circuit potential (OCP), linear potentiodynamic polarization (LP) and electrochemical impedance spectroscopy (EIS). The results were reported in comparison with the bare 6061-O aluminum alloy to determine the corrosion performance of the coated 6061-O alloy. The PEO-treated aluminum alloy showed substantially higher corrosion resistance in comparison with the untreated substrate material. A relationship was found between the coating formation stage, process parameters and the thickness of the oxide-formed layers, which has a measurable influence on enhancing corrosion resistance properties. This study demonstrates promising results of utilizing PEO process to enhance corrosion resistance properties of high-strength aluminum alloys and could be recommended as a method used in industrial applications.


2007 ◽  
Vol 561-565 ◽  
pp. 127-130
Author(s):  
M. Hara ◽  
K. Matsuda ◽  
T. Iwai ◽  
M. Kihara ◽  
W. Yamauchi ◽  
...  

A new surface treatment technology for the aluminum alloys that exhibits not only high corrosion and weather resistance but also good mirror luster has been developed. By performing electrolytic permeation, the improved corrosion resistance and weather resistance while maintaining a high mirror luster was achieved for an aluminum alloy A2014-T6. The high strength aluminum alloys featuring high corrosion and weather resistance have been available for industrial products. Then the claim number of the products by A2014 T6 aluminum alloy has been reduced sharply to almost zero level in comparison with a past. A few applications and the development of the processing in industrial scale in A2014 T6 aluminum alloy will be presented.


Author(s):  
Vasile Hotea ◽  

In this work, some aspects of nondestructive testing methods has been highlighted out, from need to better understand the surface defects in the casting process of high strength aluminum alloy semifinished products used in aeronautical technique and how to apply the methods of nondestructive in general and, in particular, the method of penetrant liquid testing.


2012 ◽  
Vol 27 (6) ◽  
pp. 658-663 ◽  
Author(s):  
C. C. Chang ◽  
C. L. Chen ◽  
J. Y. Wen ◽  
C. M. Cheng ◽  
C. P. Chou

2020 ◽  
Vol 22 (1) ◽  
pp. 161
Author(s):  
Martin Jarenmark ◽  
Peter Sjövall ◽  
Shosuke Ito ◽  
Kazumasa Wakamatsu ◽  
Johan Lindgren

Residual melanins have been detected in multimillion-year-old animal body fossils; however, confident identification and characterization of these natural pigments remain challenging due to loss of chemical signatures during diagenesis. Here, we simulate this post-burial process through artificial maturation experiments using three synthetic and one natural eumelanin exposed to mild (100 °C/100 bar) and harsh (250 °C/200 bar) environmental conditions, followed by chemical analysis employing alkaline hydrogen peroxide oxidation (AHPO) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). Our results show that AHPO is sensitive to changes in the melanin molecular structure already during mild heat and pressure treatment (resulting, e.g., in increased C-C cross-linking), whereas harsh maturation leads to extensive loss of eumelanin-specific chemical markers. In contrast, negative-ion ToF-SIMS spectra are considerably less affected by mild maturation conditions, and eumelanin-specific features remain even after harsh treatment. Detailed analysis of ToF-SIMS spectra acquired prior to experimental treatment revealed significant differences between the investigated eumelanins. However, systematic spectral changes upon maturation reduced these dissimilarities, indicating that intense heat and pressure treatment leads to the formation of a common, partially degraded, eumelanin molecular structure. Our findings elucidate the complementary nature of AHPO and ToF-SIMS during chemical characterization of eumelanin traces in fossilized organismal remains.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4223
Author(s):  
Po-Sung Chen ◽  
Yu-Chin Liao ◽  
Yen-Ting Lin ◽  
Pei-Hua Tsai ◽  
Jason S. C. Jang ◽  
...  

Most high-entropy alloys and medium-entropy alloys (MEAs) possess outstanding mechanical properties. In this study, a series of lightweight nonequiatomic Al50–Ti–Cr–Mn–V MEAs with a dual phase were produced through arc melting and drop casting. These cast alloys were composed of body-centered cubic and face-centered cubic phases. The density of all investigated MEAs was less than 5 g/cm3 in order to meet energy and transportation industry requirements. The effect of each element on the microstructure evolution and mechanical properties of these MEAs was investigated. All the MEAs demonstrated outstanding compressive strength, with no fractures observed after a compressive strain of 20%. Following the fine-tuning of the alloy composition, the Al50Ti20Cr10Mn15V5 MEA exhibited the most compressive strength (~1800 MPa) and ductility (~34%). A significant improvement in the mechanical compressive properties was achieved (strength of ~2000 MPa, strain of ~40%) after annealing (at 1000 °C for 0.5 h) and oil-quenching. With its extremely high specific compressive strength (452 MPa·g/cm3) and ductility, the lightweight Al50Ti20Cr10Mn15V5 MEA demonstrates good potential for energy or transportation applications in the future.


2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Jiaheng Li ◽  
Yingbo Zhang ◽  
Xinyu Cao ◽  
Qi Zeng ◽  
Ye Zhuang ◽  
...  

Abstract Aluminum alloys are attractive for a number of applications due to their high specific strength, and developing new compositions is a major goal in the structural materials community. Here, we investigate the Al-Zn-Mg-Cu alloy system (7xxx series) by machine learning-based composition and process optimization. The discovered optimized alloy is compositionally lean with a high ultimate tensile strength of 952 MPa and 6.3% elongation following a cost-effective processing route. We find that the Al8Cu4Y phase in wrought 7xxx-T6 alloys exists in the form of a nanoscale network structure along sub-grain boundaries besides the common irregular-shaped particles. Our study demonstrates the feasibility of using machine learning to search for 7xxx alloys with good mechanical performance.


Sign in / Sign up

Export Citation Format

Share Document