scholarly journals Polymorph-induced photosensitivity change in titanylphthalocyanine revealed by the charge transfer integral

Nanophotonics ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 787-797 ◽  
Author(s):  
Xiaolong Li ◽  
Yin Xiao ◽  
Shirong Wang ◽  
Yuhao Yang ◽  
Yongning Ma ◽  
...  

AbstractThe crystal form of semiconductor materials is keenly correlated with the photosensitivity of optoelectronic devices. Thus, understanding the crystal form-dependent photosensitivity mechanism is critical. In this work, the microemulsion phase transfer method was adopted to prepare α- and β-titanylphthalocyanine (TiOPc NPs) with an average diameter of 35 nm. The photosensitivity (E1/2) of α-TiOPc NPs was 2.73 times better than that of β-TiOPc NPs, which was characterized by photoconductors under the same measurement conditions. DFT was performed to explain the relationship between crystal form and photosensitivity by systematically calculating the charge transfer integrals for all possible dimers in the two different crystal forms. The hole and electron reorganization energies of TiOPc were respectively calculated to be 53.5 and 271.5 meV, revealing TiOPc to be a typical p-type semiconductor. The calculated total hole transfer mobility (μ+) ratio (2.83) of α- to β-TiOPc was almost identical to the experimental E1/2 ratio (2.73) and the calculated photogeneration quantum efficiency (ηe-h) ratio (2.23). In addition, the optimum hole transfer routes in the crystal of α- and β-TiOPc were all along with the [1 0 0] crystal orientation, which was determined by the calculated μ+. A high charge transfer mobility leads to a high photosensitive TiOPc crystal. Consequently, these results indicate that the selected theoretical calculation method is reasonable for indirectly explaining the relationship between crystal form and photosensitivity. The TiOPc molecular solid-state arrangements, namely, the crystal forms of TiOPc, have a strong influence on the charge transport behavior, which in turn, affects its photosensitivity.

Crystals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 129
Author(s):  
Liana Vella-Zarb ◽  
Ulrich Baisch

There is much interest and focus on solid forms of famciclovir. However, in spite of the abundance of reported differences in oral bioavailability, compressibility, and other physical–chemical properties of the various crystal forms of this drug, very little precise structural analysis is available in the literature to date. The form used in the commercial formulation is the anhydrous form I. Patents and patent applications report three different anhydrous crystalline forms on the basis of unindexed powder diffraction patterns. Single-crystal and variable-temperature X-ray diffraction experiments using the commercially available anhydrous form of famciclovir were carried out and led not only to the crystal structure determination of the anhydrous form I, but also to discovery of a new crystal form of anhydrous famciclovir from powder data.


Nanomaterials ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 34
Author(s):  
Zhihao Zhang ◽  
Pengchao Li ◽  
Yuzong Gu

It is significant to study the reason that semiconductor material has adjustable third-order optical nonlinearity through crystal form and dimensions are changed. αMnS nanoparticles with different crystal forms and sizes were successfully prepared by one-step hydrothermal synthesis method and their size-limited third-order nonlinear optical property was tested by Z-scan technique with 30 ps laser pulses at 532 nm wavelength. Nanoparticles of different crystal forms exhibited different NLO (nonlinear optical) responses. γMnS had stronger NLO response than αMnS because of higher fluorescence quantum yield. Two-photon absorption and the nonlinear refraction are enhanced as size of nanoparticlesreduced. The nanoparticles had maximum NLO susceptibility which was 3.09 × 10−12 esu. Susceptibility of αMnS increased about nine times than that of largest nanoparticles. However, it was reduced when size was further decreased. This trend was explained by the effects of light induced dipole moments. And defects in αMnS nanoparticles also had effect on this nonlinear process. MnS nanoparticles had potential application value in optical limiting and optical modulation.


2006 ◽  
Vol 110 (40) ◽  
pp. 11551-11556 ◽  
Author(s):  
N. Santhanamoorthi ◽  
P. Kolandaivel ◽  
K. Senthilkumar

Author(s):  
Kai Zhang ◽  
Jianzhong Fan ◽  
Chuankui Wang ◽  
Lili Lin

Modulating the relationship between molecular structures and luminescent properties as well as the charge transfer property for deep-red thermally activated delayed fluorescence (TADF) emitters has always been a powerful challenge,...


1999 ◽  
Vol 55 (4) ◽  
pp. 907-909 ◽  
Author(s):  
Jun Masuda ◽  
Tetsuya Yamaguchi ◽  
Takamasa Tobimatsu ◽  
Tetsuo Toraya ◽  
Kyoko Suto ◽  
...  

Two crystal forms of Klebsiella oxytoca diol dehydratase complexed with cyanocobalamin have been obtained and preliminary crystallographic experiments have been performed. The crystals belong to two different space groups, depending on the crystallization conditions. One crystal (form I) belongs to space group P212121 with unit-cell parameters a = 76.2, b = 122.3, c = 209.6 Å, and diffracts to 2.2 Å resolution using an X-ray beam from a synchrotron radiation source. The other crystal (form II) belongs to space group P21 with unit-cell parameters a = 75.4, b = 132.7, c = 298.8 Å, β = 91.9°, and diffracts to 3.0 Å resolution. For the purpose of structure determination, a heavy-atom derivative search was carried out and some mercuric derivatives were found to be promising. Structure analysis by the multiple isomorphous replacement method is now under way.


Author(s):  
Shukun Luo ◽  
Ke Xu ◽  
Shaoyun Xiang ◽  
Jie Chen ◽  
Chunyun Chen ◽  
...  

Human indoleamine 2,3-dioxygenase 1 (IDO1) is a heme-dependent enzyme with important roles in many cellular processes and is a potential target for drug discovery against cancer and other diseases. Crystal structures of IDO1 in complex with various inhibitors have been reported. Many of these crystals belong to the same crystal form and most of the reported structures have resolutions in the range 3.2–2.3 Å. Here, three new crystal forms of human IDO1 obtained by introducing a surface mutation, K116A/K117A, distant from the active site are reported. One of these crystal forms diffracted to 1.5 Å resolution and can be readily used for soaking experiments to determine high-resolution structures of IDO1 in complex with the substrate tryptophan or inhibitors that coordinate the heme. In addition, this mutant was used to produce crystals of a complex with an inhibitor that targets the apo form of the enzyme under the same conditions; the structure of this complex was determined at 1.7 Å resolution. Overall, this mutant represents a robust platform for determining the structures of inhibitor and substrate complexes of IDO1 at high resolution.


1997 ◽  
Vol 296 (1) ◽  
pp. 255-268 ◽  
Author(s):  
Toshihiro Hiejima ◽  
Kyuya Yakushi ◽  
Takafumi Adachi ◽  
Osamu Shimomura ◽  
Keiki Takeda ◽  
...  

2018 ◽  
Vol 233 (9-10) ◽  
pp. 649-661 ◽  
Author(s):  
Daniel Tchoń ◽  
Anna Makal ◽  
Matthias Gutmann ◽  
Krzysztof Woźniak

Abstract High-resolution low-temperature X-ray diffraction experiments for doxycycline monohydrate and hydrochloride dihydrate have been performed. Translation-Libration-Screw (TLS) analysis for both crystal forms as well as the data from neutron diffraction experiment for hydrochloride combined with the Hansen-Coppens formalism resulted in precise charge density distribution models for both the zwitterionic monohydrate and a protonated hydrochloride crystal forms. Their detailed topological analysis suggested that the electron structure of doxycycline’s amide moiety undergoes significant changes during protonation due to formation of a very strong resonance-assisted hydrogen bond. A notably increased participation of amide nitrogen atom and hydrogen-accepting oxygen atom in the resonance upon doxycycline protonation was observed. A comparison of TLS- and neutron data-derived hydrogen parameters confirmed the experimental neutron data to be vital for proper description of intra- and inter-molecular interactions in this compound. Finally, calculated lattice and interaction energies quantified repulsive Dox-Dox interactions in the protonated crystal form of the antibiotic, relating with a good solubility of doxycycline hydrochloride relative to its hydrate.


Author(s):  
Junqing Yang ◽  
Gu-Dan Zhang ◽  
Jianguo Zhang ◽  
Dong Chen ◽  
Qi Zhang

In order to understand the relationship between the laser initiation and the charge transfer of the metal tetrazine complexes (MTCs), several sets of MTCs with different metals and ligands were...


Sign in / Sign up

Export Citation Format

Share Document