scholarly journals Effect of Salt Stress and Irrigation Water on Growth and Development of Sweet Basil (Ocimum basilicum L.)

2017 ◽  
Vol 2 (1) ◽  
pp. 589-594 ◽  
Author(s):  
Omer Caliskan ◽  
Dursun Kurt ◽  
Kadir Ersin Temizel ◽  
Mehmet Serhat Odabas

AbstractThis study was conducted to assess the influence of different salinity and irrigation water treatments on the growth and development of sweet basil (Ocimum basilicum L.). Five salinity levels (0.4, 1.00, 2.50, 4.00 and 8.00 dSm-1) and three different irrigation water regimes (80, 100, 120% of full irrigation) were applied in a factorial design with three replications. Dry root weight, aerial part dry weight and aerial part/root ratio were determined and evaluated as experimental parameters at the end of growing period. Results revealed significant decreases in yields with increasing salinity levels. However, basil managed to survive high salt stress. With increasing salinity levels, decreases in growth were higher in roots than in leaves. Changes in the amount of irrigation water also significantly affected the evaluated parameters.

Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 696
Author(s):  
Reem H. Alzahib ◽  
Hussein M. Migdadi ◽  
Abdullah A. Al Ghamdi ◽  
Mona S. Alwahibi ◽  
Abdullah A. Ibrahim ◽  
...  

Understanding salt tolerance in tomato (Solanum lycopersicum L.) landraces will facilitate their use in genetic improvement. The study assessed the morpho-physiological variability of Hail tomato landraces in response to different salinity levels at seedling stages and recommended a tomato salt-tolerant landrace for future breeding programs. Three tomato landraces, Hail 548, Hail 747, and Hail 1072 were tested under three salinity levels: 75, 150, and 300 mM NaCl. Salinity stress reduced shoots’ fresh and dry weight by 71% and 72%, and roots were 86.5% and 78.6%, respectively. There was 22% reduced chlorophyll content, carotene content by 18.6%, and anthocyanin by 41.1%. Proline content increased for stressed treatments. The 300 mM NaCl treatment recorded the most proline content increases (67.37 mg/g fresh weight), with a percent increase in proline reaching 61.67% in Hail 747. Superoxide dismutase (SOD) activity decreased by 65% in Hail 548, while it relatively increased in Hail 747 and Hail 1072 treated with 300 mM NaCl. Catalase (CAT) activity was enhanced by salt stress in Hail 548 and recorded 7.6%, increasing at 75 and 5.1% at 300 mM NaCl. It revealed a reduction in malondialdehyde (MDA) at the 300 mM NaCl concentration in both Hail 548 and Hail 1072 landraces. Increasing salt concentrations showed a reduction in transpiration rate of 70.55%, 7.13% in stomatal conductance, and 72.34% in photosynthetic rate. K+/Na+ ratios decreased from 56% for 75 mM NaCl to 85% for 300 mM NaCl treatments in all genotypes. The response to salt stress in landraces involved some modifications in morphology, physiology, and metabolism. The landrace Hail 548 may have better protection against salt stress and observed protection against reactive oxygen species (ROS) by increasing enzymatic “antioxidants” activity under salt stress.


2020 ◽  
Vol 25 (3) ◽  
pp. 349-355
Author(s):  
Fitri Krismiratsih ◽  
Sugeng Winarso ◽  
Slamerto Slamerto

Efforts to increase production potential can be carried out by extensification in a less productive saline land. Salinity is a major problem in the growth of most plants. Azolla is a plant that is sensitive to salinity, but if it is applied well, it can grow optimally at high salinity levels. The purpose of this study is to obtain an azolla application technique that is effective in increasing the adaptation of rice plants to NaCl saline soil conditions. The experimental design used was Randomized Block Design (RBD) with 2 factors and 3 replications. The first factor was the azolla application technique consisted of 3 levels: fresh azolla composted, fresh azolla immersed, and fresh azolla as a ground cover. The second factor was the levels of NaCl salt stress consisted of 4 levels: control DHL 0, 2, 4, and 8 dS m-1. The adaptation ability of rice plants based on variable plants height growth rate, number of tillers, strove dry weight, root dry weight, stomata density, leaf chlorophyll (SPAD), age of flowering, number of paddy grain, and harvest index. The results showed how to test content up to 2 dS m-1 which increased rice growth especially the application of azolla composted. Increasing stress to 4 and 8 dS m-1showed bad effects on vegetative, physiology, and yields of rice components. The stronger of salt stress the higher all plants growth variables except the age of flowering that actually showed the acceleration of flowering. Application of composted azolla can increase the root dry weight and azolla as a ground cover can increase the numbers of paddy grains.   Keywords: azolla, NaCl, rice, stress


2015 ◽  
Vol 67 (3) ◽  
pp. 993-1000 ◽  
Author(s):  
Lydia Shtereva ◽  
Roumiana Vassilevska-Ivanova ◽  
Tanya Karceva

An experiment was carried out hydroponically under laboratory conditions to investigate the effect of salt stress on several physiological and biochemical parameters of three sweet corn (Zea mays L. var. saccharata) genotypes: lines 6-13, C-6 (pollen source) and their heterotic F1 hybrid ?Zaharina?. The degree of salinity tolerance among these genotypes was evaluated at three different sodium chloride (NaCl) concentrations: 0 mM, 100 mM, 125 mM and 150 mM. Seed germination, plant growth and biochemical stress determining parameters such as malondialdehyde (MDA), proline content and hydrogen peroxide (H2O2) levels were compared between seedlings of lines and hybrid. The obtained results indicated that both lines and hybrid have similar responses at different salinity levels for all examined traits. All the seedlings? growth parameters, such as germination percentage, root length, shoot length, root and shoot fresh and dry weight, decreased with increasing salinity level. MDA, proline and H2O2 increased at different saline conditions in comparison to the control. Based on the results, of the three genotypes examined, the hybrid Zaharina, followed by line C-6, was more salt-sensitive than line 6-13 in salt stress condition.


2015 ◽  
Vol 15 (4) ◽  
pp. 415 ◽  
Author(s):  
Svjetlana Zeljković ◽  
Nada Parađiković ◽  
Uroš Šušak ◽  
Monika Tkalec

In this study, the influence of biostimulants Radifarm® on basil transplants (Ocimum basilicum L.) growth and development was examined.Seedlings transplanted into the PVC containers φ9 cm,the plants were tre­ated with the biostimulant concentration of 0.30% or untreated(control). During the experiment recorded the morphological indicators of growth and development of seedlings(plant height, number of leaves), and finally made measuring root length and fresh and dry weight of roots and above-groundparts.The aim of this study was to determine whether, to what extent and in what manner applied biostimulator impact on improved growth and root development of seedlings of basil, and thus improve the adaptation of the young seedlings in abiotical stress of transplanting into the open field. All the traits were affected by treatment with biostimulants a certain duration of the experiment.Research indicates that the use of biostimulants in the production of basil enhances the growth and development of roots and above-ground parts which is a prerequisite for faster plant adaptation on stress during transplanting.


HortScience ◽  
2009 ◽  
Vol 44 (1) ◽  
pp. 138-144 ◽  
Author(s):  
Luis A. Valdez-Aguilar ◽  
Catherine M. Grieve ◽  
James Poss ◽  
Michael A. Mellano

Ranunculus, grown as a field crop in southern and central coastal California, is highly valued in the cut flower and tuberous root markets. However, concerns regarding the sustainability of ranunculus cultivation have arisen when the plantations are irrigated with waters of marginal quality because the viability of the tuberous roots may be compromised. A study was initiated to evaluate the effect of saline irrigation waters, with and without pH control, on the growth of plants and tuberous roots of ranunculus. Treatments consisted of four irrigation water solutions with increasing concentration of Ca2+, Mg2+, Na+, SO42−, and Cl− to meet an electrical conductivity (EC) of 2, 3, 4, and 6 dS·m−1 and pH 6.4. The 3, 4, and 6 dS·m−1 solutions were replicated with uncontrolled pH, which averaged 7.8 over the trial. Ranunculus ‘Yellow ASD’ and ‘Pink CTD’ seedlings were transplanted into greenhouse sand tanks and irrigated twice daily with treatment solutions. Shoot dry weight of plants irrigated with 2 dS·m−1 solutions was 7.20 g and 6.66 g in ‘Yellow ASD’ and ‘Pink CTD’, respectively; however, increasing EC from 2 to 3 dS·m−1 induced an 83% and 78% decrease, respectively. Tuberous root fresh weight of control plants, 7.45 g and 8.42 g for ‘Yellow ASD’ and ‘Pink CDT’, respectively, was decreased by 82% and 89% when EC was 6 dS·m−1. High pH of irrigation water caused an additional decrease in shoot dry weight and tuberous root weight. In control plants, 83% and 76% of tuberous roots of ‘Yellow ASD’ and ‘Pink CTD’, respectively, that were transplanted in the following season produced new shoots; however, tuberous roots sprouting percentage from plants irrigated with EC 4 dS·m−1 water decreased to 42.9% and 58.3% and to 11.1% and 45.0% with EC 6 dS·m−1. The hypersensitivity of ranunculus to salinity was associated with a significant decrease in Ca2+ and K+ tissue concentration. In ‘Yellow ASD’, Ca2+ decreased from 202 mmol·kg−1 in control plants to 130 mmol·kg−1 in plants irrigated with 3 dS·m−1 solutions and pH 6.4. In ‘Pink CTD’, the decrease was from 198 mmol·kg−1 to 166 mmol·kg−1. Potassium was similarly affected. Compared with control plants (405 mmol·kg−1), shoot Na+ concentration was increased by 101% in ‘Yellow ASD’ and by 125% in ‘Pink CTD’ when irrigated with 6 dS·m−1 water. Salt sensitivity of ranunculus, as determined by growth of the flowering stems and viability of the tuberous roots, was increased by irrigation with alkaline waters, which was associated with additional increases in Na+ and Cl– tissue concentration and decreased iron accumulation. Hypersensitivity to salinity makes ranunculus crop a poor candidate for water reuse systems; however, further research is warranted to elucidate the possibility of enhancing its tolerance to salinity by supplemental Ca2+ and K+ and acidification of irrigation water.


2015 ◽  
Vol 43 (1) ◽  
pp. 214-221 ◽  
Author(s):  
Cenk KÜÇÜKYUMUK ◽  
Halit YILDIZ ◽  
Zeliha KÜÇÜKYUMUK ◽  
Ali ÜNLÜKARA

This study was conducted to determine the responses of '0900 Ziraat' sweet cherry cultivar grafted on mazzard (Prunus avium L.) and mahaleb (P. mahaleb L.) rootstocks, to different irrigation water salinity levels. One year old sweet cherry trees were planted in 50-liter pots at Eğirdir Fruit Research Station (Isparta, Turkey). Four different irrigation water salinity levels (S1=0.3 dS m-1, S2=2.0 dS m-1, S3=4.0 dS m-1 and S4=6 dS m-1) were used for both variety/rootstock combinations. The results showed that sweet cherry trees grafted on mahaleb rootstocks extracted more water under saline conditions than the ones grafted on mazzard. Water salinity levels caused more damage on 0900/mazzard than on 0900/mahaleb. Towards the end of the growing period, plant deaths were detected in S3 and S4 treatments. While leaf water potential (LWP) ranged from -1.54 to -3.33 MPa, stomatal conductance ranged from 26.8 to 199.5 mmol m-2 s-1. It was determined that both parameters decreased towards the end of the growing period for all treatments. Sodium (Na) uptake was excluded by 0900/mahaleb rootstocks, but chloride (Cl−) uptake was excluded only for higher saline conditions. As a result, mahaleb (P. mahaleb L.) rootstock could be recommended to be used as rootstock for sweet cherry culture under saline conditions.


2013 ◽  
Vol 46 (1) ◽  
pp. 89-97 ◽  
Author(s):  
M. Hassanzadehdelouei ◽  
F. Vazin ◽  
J. Nadaf

Abstract Cumin (Cuminum cyminum L.) is one of the most important pharmaceutical plants. As a considerable portion of existing agricultural lands in arid regions is exposed to aridity and finally to salinity, we need to study the effects of salinity on the growth and production of agronomical products. For this purpose, an agricultural experiment in the form of split plots with three replications was conducted in 2011 at the Islamic Azad University, Gonabad Branch, Iran, in the longitude of 58°, 50’, latitude of 34°, 54’, and altitude of 940 m from the sea level. At the main plot, four salinity levels (2,5,8 and 11ds/m) and at the sub plot, the growth stages of stress implementation (including stress in establishment, flowering, and seed filling stage), were located at random. The results showed that the salinity rate had significant impact on fresh weight, dry weight, height , percentage of essence, seed and biological yield. With the increase in salinity from 2 to 11ds/m, a significant decrease in all vegetative and reproductive characteristics were observed. The most sensitive growth stages of plant to salt stress, during vegetative and reproductive period were the stage of establishment and flowering, respectively. There was no interaction between the growth stage of plant and salinity rate, except for seed yield and harvest index.


1994 ◽  
Vol 72 (8) ◽  
pp. 1216-1221 ◽  
Author(s):  
O. T. Okusanya ◽  
O. Oyesiku

The germination and growth responses of two legumes, Vigna luteola and Vigna vexillata, to different salinity levels were compared in laboratory experiments. Vigna luteola seeds tolerated a higher level of salinity and germinated significantly better at high salinities than corresponding results for V. vexillata. Seedlings of V. luteola exhibited a significant increase in dry weight at 10% sea water followed by a significant decrease at 30% seawater and above. Vigna vexillata seedlings showed a gradual decrease in dry weight with increased salinity. Except at 0% seawater, dry weights of V. luteola seedlings were significantly higher than those of V. vexillata at all salinities tested. The proportion of root weight to total plant dry weight increased with increased salinity in V. luteola; the reverse was the case in V. vexillata. In both species, increased salinity resulted in increased sodium content but decreased potassium and calcium contents. While the sodium content of the shoot of V. vexillata was higher than that of V. luteola, the amount in the roots of V. luteola was higher. The potassium and calcium contents were higher in V. luteola than in V. vexillata and the sodium to potassium ratio values were lower in V. luteola than in V. vexillata. The results are compared with those of other legumes and discussed in relation to the habitats of the species, the characteristics of halophytes, and the uses which these legumes may have in salt-enriched lands. Key words: salinity, tolerance, germination, growth, Vigna.


2021 ◽  
Vol 15 ◽  
Author(s):  
Juvenaldo Florentino Canjá ◽  
Josimar De Azevedo ◽  
Geocleber Gomes de Sousa ◽  
Clarissa Lima Magalhães ◽  
Thales Vinícius De Araújo Viana

Zucchini culture is slightly sensitive to salinity and is among the ten vegetables of highest economic value, with characteristics of precocity and easy cultivation. These characteristics are some of the reasons for the expansion of its cultivation among small producers. Thus, the objective was to evaluate the effect of different levels of salinity in the irrigation water and biofertilizer types on the initial growth of the zucchini (Cucurbita pepo L.) culture. The experiment was carried out in the full sunlight in a randomized block design, in a 5x2 factorial arrangement. The treatments consisted of a combination of five types of biofertilizers (quail, sheep, mixed, bovine, and crab) and two salinity levels of the irrigation water (0.8 and 2.5 dS m-1), with five replicates. At 30 days after transplanting, the following variables were evaluated: electrical conductivity of the substrate, plant height, number of leaves, roots length, stem diameter, leaf area, chlorophyll content, dry mass of the aerial part, root dry mass, and total dry mass. Salt stress negatively interferes with the accumulation of zucchini plant biomass. Quail, bovine, and sheep biofertilizers are more efficient about plant height, number of leaves, and stem diameter. The sheep biofertilizer attenuates the salt stress for the dry mass of the aerial part, the root, and the total dry mass.


Sign in / Sign up

Export Citation Format

Share Document