Recent investigations of bioactive natural products from endophytic, marine-derived, insect pathogenic fungi and Thai medicinal plants

2014 ◽  
Vol 86 (6) ◽  
pp. 979-993 ◽  
Author(s):  
Chulabhorn Mahidol ◽  
Prasat Kittakoop ◽  
Vilailak Prachyawarakorn ◽  
Phanruethai Pailee ◽  
Hunsa Prawat ◽  
...  

AbstractLiving organisms in Thailand are very diverse due to the unique geographical location of Thailand. The diversity of Thai bioresources has proven to be a rich source of biologically active compounds. The present review covers bioactive substances from Thai endophytic, marine-derived, insect pathogenic fungi and medicinal plants. Many new compounds isolated from Thai bioresources have diverse skeletons belonging to various classes of natural products. These compounds exhibited an array of biological activities, and some are of pharmaceutical interest. Bioactive compounds from Thai bioresources have not only attracted organic chemists to develop strategies for total synthesis, but also attracted (chemical) biologists to investigate the mechanisms of action. The chemistry and biology of some selected compounds are also discussed in this review.

2020 ◽  
Vol 24 (4) ◽  
pp. 354-401 ◽  
Author(s):  
Keisham S. Singh

Marine natural products (MNPs) containing pyrone rings have been isolated from numerous marine organisms, and also produced by marine fungi and bacteria, particularly, actinomycetes. They constitute a versatile structure unit of bioactive natural products that exhibit various biological activities such as antibiotic, antifungal, cytotoxic, neurotoxic, phytotoxic and anti-tyrosinase. The two structure isomers of pyrone ring are γ- pyrone and α-pyrone. In terms of chemical motif, γ-pyrone is the vinologous form of α- pyrone which possesses a lactone ring. Actinomycete bacteria are responsible for the production of several α-pyrone compounds such as elijopyrones A-D, salinipyrones and violapyrones etc. to name a few. A class of pyrone metabolites, polypropionates which have fascinating carbon skeleton, is primarily produced by marine molluscs. Interestingly, some of the pyrone polytketides which are found in cone snails are actually synthesized by actinomycete bacteria. Several pyrone derivatives have been obtained from marine fungi such as Aspergillums flavus, Altenaria sp., etc. The γ-pyrone derivative namely, kojic acid obtained from Aspergillus fungus has high commercial demand and finds various applications. Kojic acid and its derivative displayed inhibition of tyrosinase activity and, it is also extensively used as a ligand in coordination chemistry. Owing to their commercial and biological significance, the synthesis of pyrone containing compounds has been given attention over the past years. Few reviews on the total synthesis of pyrone containing natural products namely, polypropionate metabolites have been reported. However, these reviews skipped other marine pyrone metabolites and also omitted discussion on isolation and detailed biological activities. This review presents a brief account of the isolation of marine metabolites containing a pyrone ring and their reported bio-activities. Further, the review covers the synthesis of marine pyrone metabolites such as cyercene-A, placidenes, onchitriol-I, onchitriol-II, crispatene, photodeoxytrichidione, (-) membrenone-C, lihualide-B, macrocyclic enol ethers and auripyrones-A & B.


Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4534
Author(s):  
Taitusi Taufa ◽  
Ramesh Subramani ◽  
Peter Northcote ◽  
Robert Keyzers

The islands of the South Pacific Ocean have been in the limelight for natural product biodiscovery, due to their unique and pristine tropical waters and environment. The Kingdom of Tonga is an archipelago in the central Indo-Pacific Ocean, consisting of 176 islands, 36 of which are inhabited, flourishing with a rich diversity of flora and fauna. Many unique natural products with interesting bioactivities have been reported from Indo-Pacific marine sponges and other invertebrate phyla; however, there have not been any reviews published to date specifically regarding natural products from Tongan marine organisms. This review covers both known and new/novel Marine Natural Products (MNPs) and their biological activities reported from organisms collected within Tongan territorial waters up to December 2020, and includes 109 MNPs in total, the majority from the phylum Porifera. The significant biological activity of these metabolites was dominated by cytotoxicity and, by reviewing these natural products, it is apparent that the bulk of the new and interesting biologically active compounds were from organisms collected from one particular island, emphasizing the geographic variability in the chemistry between these organisms collected at different locations.


Synthesis ◽  
2018 ◽  
Vol 51 (06) ◽  
pp. 1342-1352 ◽  
Author(s):  
Javier Izquierdo ◽  
Atul Jain ◽  
Sarki Abdulkadir ◽  
Gary Schiltz

The chromenone core is an ubiquitous group in biologically active natural products and has been extensively used in organic synthesis. Fluorine-derived compounds, including those with a trifluoromethyl group (CF3), have shown enhanced biological activities in numerous pharmaceuticals compared with their non-fluorinated analogues. 2-Trifluoromethylchromenones can be readily functionalized at the 8- and 7-positions, providing chromenones cores of high structural complexity, which are excellent precursors for numerous trifluoromethyl heterocycles.


2021 ◽  
Vol 9 ◽  
Author(s):  
Gen Li ◽  
Xuling Peng ◽  
Yajing Guo ◽  
Shaoxuan Gong ◽  
Shijie Cao ◽  
...  

In recent years, biologically active natural products have gradually become important agents in the field of drug research and development because of their wide availability and variety. However, the target sites of many natural products are yet to be identified, which is a setback in the pharmaceutical industry and has seriously hindered the translation of research findings of these natural products as viable candidates for new drug exploitation. This review systematically describes the commonly used strategies for target identification via the application of probe and non-probe approaches. The merits and demerits of each method were summarized using recent examples, with the goal of comparing currently available methods and selecting the optimum techniques for identifying the targets of bioactive natural products.


Molecules ◽  
2019 ◽  
Vol 24 (15) ◽  
pp. 2753 ◽  
Author(s):  
Sabrina Esposito ◽  
Alessandro Bianco ◽  
Rosita Russo ◽  
Antimo Di Maro ◽  
Carla Isernia ◽  
...  

A large range of chronic and degenerative diseases can be prevented through the use of food products and food bioactives. This study reports the health benefits and biological activities of the Urtica dioica (U. dioica) edible plant, with particular focus on its cancer chemopreventive potential. Numerous studies have attempted to investigate the most efficient anti-cancer therapy with few side effects and high toxicity on cancer cells to overcome the chemoresistance of cancer cells and the adverse effects of current therapies. In this regard, natural products from edible plants have been assessed as sources of anti-cancer agents. In this article, we review current knowledge from studies that have examined the cytotoxic, anti-tumor and anti-metastatic effects of U. dioica plant on several human cancers. Special attention has been dedicated to the treatment of breast cancer, the most prevalent cancer among women and one of the main causes of death worldwide. The anti-proliferative and apoptotic effects of U. dioica have been demonstrated on different human cancers, investigating the properties of U. dioica at cellular and molecular levels. The potent cytotoxicity and anti-cancer activity of the U. dioica extracts are due to its bioactive natural products content, including polyphenols which reportedly possess anti-oxidant, anti-mutagenic and anti-proliferative properties. The efficacy of this edible plant to prevent or mitigate human cancers has been demonstrated in laboratory conditions as well as in experimental animal models, paving the way to the development of nutraceuticals for new anti-cancer therapies.


RSC Advances ◽  
2014 ◽  
Vol 4 (75) ◽  
pp. 40095-40110 ◽  
Author(s):  
Conrad V. Simoben ◽  
Fidele Ntie-Kang ◽  
Lydia L. Lifongo ◽  
Smith B. Babiaka ◽  
Wolfgang Sippl ◽  
...  

In this review, a continuation of our in-depth coverage of natural products derived from West African medicinal plants with diverse biological activities has been given.


RSC Advances ◽  
2014 ◽  
Vol 4 (67) ◽  
pp. 35348-35370 ◽  
Author(s):  
Fidele Ntie-Kang ◽  
Lydia L. Lifongo ◽  
Conrad V. Simoben ◽  
Smith B. Babiaka ◽  
Wolfgang Sippl ◽  
...  

In this review series, an attempt has been made to give indepth coverage of natural products derived from West African medicinal plants with diverse biological activities.


Antibiotics ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1142
Author(s):  
Rafaela Guimarães ◽  
Catarina Milho ◽  
Ângela Liberal ◽  
Jani Silva ◽  
Carmélia Fonseca ◽  
...  

The use of natural products to promote health is as old as human civilization. In recent years, the perception of natural products derived from plants as abundant sources of biologically active compounds has driven their exploitation towards the search for new chemical products that can lead to further pharmaceutical formulations. Candida fungi, being opportunistic pathogens, increase their virulence by acquiring resistance to conventional antimicrobials, triggering diseases, especially in immunosuppressed hosts. They are also pointed to as the main pathogens responsible for most fungal infections of the oral cavity. This increased resistance to conventional synthetic antimicrobials has driven the search for new molecules present in plant extracts, which have been widely explored as alternative agents in the prevention and treatment of infections. This review aims to provide a critical view and scope of the in vitro antimicrobial and antibiofilm activity of several medicinal plants, revealing species with inhibition/reduction effects on the biofilm formed by Candida spp. in the oral cavity. The most promising plant extracts in fighting oral biofilm, given their high capacity to reduce it to low concentrations were the essential oils extracted from Allium sativum L., Cinnamomum zeylanicum Blume. and Cymbopogon citratus (DC) Stapf.


Sign in / Sign up

Export Citation Format

Share Document