Instrumental characterization of geological materials and their synthetic analogs

2015 ◽  
Vol 87 (3) ◽  
pp. 301-306 ◽  
Author(s):  
Enver Murad

AbstractThe mineralogy of geological samples is generally determined by optical microscopy or X-ray diffraction. 57Fe Mössbauer and Raman spectroscopies are effective alternative non-destructive nuclear and vibrational instrumental techniques that can – in conjunction with the former procedures, and all the more when these fail – serve for mineral characterization. In favorable cases these spectroscopic techniques enable, beyond a mere general characterization, the conclusive identification of selected minerals.

Polymers ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1498 ◽  
Author(s):  
Abdul Hafeez ◽  
Zareen Akhter ◽  
John F. Gallagher ◽  
Nawazish Ali Khan ◽  
Asghari Gul ◽  
...  

Bis-aldehyde monomers 4-(4′-formyl-phenoxy)benzaldehyde (3a), 3-methoxy-4-(4′-formyl-phenoxy)benzaldehyde (3b), and 3-ethoxy-4-(4′-formyl-phenoxy)benzaldehyde (3c) were synthesized by etherification of 4-fluorobenzaldehyde (1) with 4-hydroxybenzaldehyde (2a), 3-methoxy-4-hydroxybenzaldehyde (2b), and 3-ethoxy-4-hydroxybenzaldehyde (2c), respectively. Each monomer was polymerized with p-phenylenediamine and 4,4′-diaminodiphenyl ether to yield six poly(azomethine)s. Single crystal X-ray diffraction structures of 3b and 3c were determined. The structural characterization of the monomers and poly(azomethine)s was performed by FT-IR and NMR spectroscopic techniques and elemental analysis. Physicochemical properties of polymers were investigated by powder X-ray diffraction, thermogravimetric analysis (TGA), viscometry, UV–vis, spectroscopy and photoluminescence. These polymers were subjected to electrical conductivity measurements by the four-probe method, and their conductivities were found to be in the range 4.0 × 10−5 to 6.4 × 10−5 Scm−1, which was significantly higher than the values reported so far.


2020 ◽  
Vol 98 (12) ◽  
pp. 755-763
Author(s):  
Hamid Reza Ghayeni ◽  
Reza Razeghi ◽  
Abolfazl Olyaei

Cadmium sulfide nanorods with a length of 69 nm have been prepared by using Cd(OAc)2.2H2O and S8 at 125 °C in the presence of triethylenetetramine as the template agent and coordination agent and characterized by using X-ray diffraction, transmission electron microscopy, FTIR, photoluminescence, and UV–vis absorption spectroscopic techniques. Photocopolymerization of glycidyl methacrylate (GMA) and sodium acrylate (SA) was carried out using CdS nanorods as a photocatalyst under UV light exposure at 400 nm in the presence of β-cyclodextrin (β-CD). To optimization of the effective parameters on the synthesis of copolymer nanocomposite, the amounts of initiator, monomers, and β-CD, duration of pre-deoxygenation, and light wavelength were evaluated. Ring opening of poly(GMA-co-SA)/CdS nanocomposite with NaN3 afforded poly(HAzPMA-co-SA)/CdS nanocomposite and subsequent mixing with RDX in DMF led to the formation of poly(HAzPMA-co-SA)/RDX/CdS nanocomposite as a polymer bonded explosive. All of the copolymer nanocomposites were characterized using various tools of instrumental analysis.


2011 ◽  
Vol 183 ◽  
pp. 89-94 ◽  
Author(s):  
Anna Iwulska ◽  
G. Sliwinski

The titanium dioxide target (99.7%) of 1 cm in dia was ablated in vacuum by laser pulses (6 ns) at 266 nm and at repetition rate of 10 Hz. During deposition the laser fluence between 1 and 3.5 J/cm2 and the O2 pressure from the range of 10-2 – 1 Pa were applied. The thin TiO2 films were deposited on glass substrate (1 × 1 cm2) heated up to 500 °C. The chemical composition of the film and samples produced by annealing were investigated by spectroscopic techniques (μ-Raman, EDX) and the structure, porosity and surface morphology were analysed by means of SEM and x-ray diffraction (XRD). The SEM inspection of the TiO2 thin film samples indicates that the obtained material is mostly crystalline. After annealing in O2 at 500 °C the structure characterized by the presence of both anatase and rutile phases is observed in the Raman spectra and confirmed by the XRD data. The phase content ratio depends on the O2 pressure applied. Results confirm that nanostructures produced in this way represent densely packed columns and promote deep penetration of guest particles such as CO2.The resulting large active surface is advantageous from the point of view of photocatalytic applications.


2020 ◽  
Author(s):  
Avupati Venkata Surya Satyanarayana ◽  
Mokka Jagannadharao ◽  
Kemburu Chandra Mouli ◽  
Kollu Sai Satya Mounika

Abstract. Particle Induced X-ray Emission (PIXE) has been applied to a analytical tool for long range of major, minor and trace elemental analysis in Precambrian charnockites. PIXE is sensitive and non-destructive method for some elemental analysis in a variety of Precambrian charnockite rocks down to levels of a few parts per million and it is not valid for all remaining elements in the composition. The elements identified in the Precambrian charnokite rock are Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Se, Br, Rb, Sr, Y, Zr, Nb, Mo, Ru, Ag, Pb are identified without exact values by PIXE but the elements minor F, major elements Na, Mg, Al, Si, P and Ba and traces of Co, Th and U not detected due to various reasons even though there present in the charnockites, because of PIXE which is operation at 3 MeV energy and characterization material of charnockite mineral investigated. In mineral characterization of charnockite rocks, elemental errors in concentration of the compositions explained by comparing with present and previous studies.


2019 ◽  
Vol 73 (9) ◽  
pp. 1074-1086
Author(s):  
Valentina Aguilar-Melo ◽  
Alejandro Mitrani ◽  
Edgar Casanova-Gonzalez ◽  
Mayra D. Manrique-Ortega ◽  
Griselda Pérez-Ireta ◽  
...  

A burial and a rich offering were found under Room 2 in the Murals Building, Bonampak, a Mayan archaeological site situated in Chiapas, Mexico. This burial may be related with the creation of the famous mural paintings. A rich set of jewelry made of green stones was among the different objects found. Green stones have great importance in Mesoamerican cultures, those composed of jadeite being the most appreciated. To characterize the green stones, different spectroscopic techniques were used in a complementary way: Raman and infrared spectroscopies (FT-IR) were used for global mineralogical analysis, while X-ray diffraction (XRD) and X-ray fluorescence (XRF) were applied simultaneously in situ on the artifacts that were not successfully identified by these molecular techniques. In addition, XRF was used to contrasts the elemental information from pieces composed of pyroxenes that may be related to the raw sources of jade in Guatemala. The main minerals identified within the beads and earrings were jadeite with omphacite and jadeite with albite; to a minor extent, quartz, and serpentine. In this paper, the main features of the molecular and X-ray techniques are compared in order to determine the advantages and limitations of these spectroscopies for mineral identification. With this combination of techniques, it was possible to undertake a suitable characterization of the analyzed objects. This paper focuses on the XRD–XRF combined analysis for in situ noninvasive characterization.


2011 ◽  
Vol 60 (1) ◽  
pp. 42-45 ◽  
Author(s):  
Xue-Chao Liu ◽  
M. Myronov ◽  
A. Dobbie ◽  
Van H. Nguyen ◽  
D.R. Leadley

2019 ◽  
Vol 16 (33) ◽  
pp. 516-523
Author(s):  
G. E. DELGADO ◽  
L. M. BELANDRIA ◽  
M. GUILLEN ◽  
A.. J. MORA ◽  
L. E. SEIJAS

2-amino-2-oxoacetic acid, carbamoyl formic acid, or oxamic acid is an active pharmaceutical ingredient (API) of great importance mainly because is an inhibitor of lactic dehydrogenase (LDH). It acts as an inhibitor to the metabolic pathways of the tumor cells and exhibited significant anticancer activity against nasopharyngeal carcinoma (NPC) cells in vitro and can be considered as a potential drug for the treatment of type 2 diabetes. Also, this compound could be used as a building block in the design of supramolecular architectures based on hydrogen bonds through the complimentary hydrogen-bond functionalities of the carbonyl and amide functional groups present. Single-crystal X-ray diffraction is the most powerful technique for crystal structure determination of small molecules. However, for several materials, including oxamic acid, it could be complicated to grow single crystals of suitable size and quality that make them appropriated to structure analysis. For this reason, the structural study was conducted with powder X-ray diffraction which is a process significantly more challenging than structure determination from single-crystal data. Oxamic acid has been characterized by FT-IR and NMR spectroscopic techniques, thermal TGA-DSC analysis, semi-empirical PM7 calculations, and X-ray powder diffraction. The title compound crystallizes in the monoclinic system with space group Cc, Z=4, and unit cell parameters a= 9.4994(4) Å, b= 5.4380(2) Å, c= 6.8636(3) Å, b= 107.149(2)°, V= 338.79(2) Å3. The molecule has a trans conformation. The molecular structure and crystal packing are stabilized mainly by intra- and intermolecular O--H···O and N--H···O hydrogen bonds. The structural characterization of this type of API compound is important to understand its mechanisms of action due to its considerable biological effects. In particular, for oxamic acid, this structural study would allow subsequent examination of its medicinal properties as an antitumor and antidiabetic agent.


2019 ◽  
Vol 84 (7) ◽  
pp. 689-699 ◽  
Author(s):  
Ivana Stanojevic ◽  
Nada Savic ◽  
Aurélien Crochet ◽  
Katharina Fromm ◽  
Milos Djuran ◽  
...  

New polynuclear silver(I) complexes, [Ag(CF3SO3)(4,7-phen)(CH3CN)]n (1) and [Ag(PO2F2)(4,7-phen)]n (2), were synthesized by the reaction of 4,7-phenanthroline (4,7-phen) and the corresponding AgX salt (X = CF3SO3 - and PF6 -) in 1:2 mole ratio, respectively, in methanol/acetone (1:1 volume ratio) at room temperature. The characterization of the complexes was established on the basis of elemental microanalysis, IR and NMR (1H and 13C) spectroscopic techniques, while their crystal structures were determined by single-crystal X-ray diffraction analysis. The results of spectroscopic and crystallographic analyses revealed that in these complexes, 4,7-phen behaves as a bridging ligand between two metal ions, while the remaining coordination sites of the Ag(I) ions are occupied by the oxygen atom of CF3SO3 - and an acetonitrile nitrogen atom in 1 or by two oxygen atoms from two PO2F2 -, formed after hydrolysis of PF6 -, in 2. In the solid state, both complexes are coordination polymers in which the geometry around the Ag(I) ions is distorted tetrahedral.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
P. V. Oliveira ◽  
M. S. S. Viana ◽  
O. A. Barros ◽  
P. T. C. Freire ◽  
F. I. Bezerra ◽  
...  

The preservation of fossils depends on several interactions of organic and inorganic chemical processes. The hard parts, which are more suitable for fossilization, might record valuable information of biogenic processes, while the taphonomic characteristics supply information on postmortem chemical transformation. Here, X-ray fluorescence, X-ray diffraction, and infrared spectroscopy analyses were carried out in Early Eoholocene fragments of bones collected from the subsurface at Gruta do Urso Fóssil, Ubajara National Park, northeast of Ceará State in Brazil. It is suggested a lower degree of decomposition, a preservation of the original mineral composition, along with some incidence of encrustation, and the occurrence of different animal species are analyzed. These preliminary data serve as a basis for future studies involving fossil biota from the deposits of Gruta do Urso Fóssil using spectroscopic techniques.


Sign in / Sign up

Export Citation Format

Share Document