scholarly journals Application of energy dissipation and damping structure in the reinforcement of shear wall in concrete engineering

Open Physics ◽  
2020 ◽  
Vol 18 (1) ◽  
pp. 631-641
Author(s):  
Shujuan Yang

AbstractIn view of the problem of large earthquake displacement in the use of the original concrete engineering shear wall reinforcement method, the energy dissipation and damping structure is used to design the energy dissipation and damping structure reinforcement method in the concrete engineering shear wall. According to the design process of the set method, the anti-vibration coefficient of the concrete shear wall is tested. The energy dissipation structure is used to construct a shear damping wall, and the damper is added to the original shear wall. The concrete shear wall is strengthened by sticking steel technology. So far, the design of shear wall reinforcement method based on the energy dissipation structure has been completed. Compared with the original method, the displacement distance of this method is lower than that of the original method. In conclusion, the effect of shear wall reinforcement method based on the energy dissipation structure is better than that of the original method.

Author(s):  
Guoqiang LI ◽  
Mengde PANG ◽  
Feifei Sun ◽  
Liulian LI ◽  
Jianyun SUN

Coupled shear walls are widely used in high rise buildings, since they can not only provide efficient lateral stiffness but also behave outstanding energy dissipation ability especially for earthquake-resistance. Traditionally, the coupling beams are made of reinforced concrete, which are prone to shear failure due to low aspect ratio and greatly reduce the efficiency and ability of energy dissipation.  For overcoming the shortcoming of concrete reinforced coupling beams (RCB), an innovative steel coupling beams called two-level-yielding steel coupling beam (TYSCB) is invented to balance the demand of stiffness and energy dissipation for coupled shear walls. TYSCBs are made of two parallel steel beams with yielding at two different levels.  To verify and investigate the aseismic behaviour improvement of TYSCB-coupled shear walls, two 1/3 scale, 10-storey coupled shear wall specimens with TYSCB and RCB were tested under both gravity and lateral displacement reversals. These two specimens were designed with the same bearing capacity, thus to be easier to compare. The experimental TYSCB specimen demonstrated more robust cyclic performance. Both specimens reached 1% lateral drift, however, the TYSCB-coupled shear wall showed minimal strength degradation. Additionally, a larger amount of energy was dissipated during each test of the TYSCB specimen, compared with the RCB specimen. Based on the experimental results, design recommendations are provided.


2021 ◽  
pp. 136943322110542
Author(s):  
Mahdi Usefvand ◽  
Ahmad Maleki ◽  
Babak Alinejad

Coupled steel plate shear wall (C-SPSW) is one of the resisting systems with high ductility and energy absorption capacity. Energy dissipation in the C-SPSW system is accomplished by the bending and shear behavior of the link beams and SPSW. Energy dissipation and floor displacement control occur through link beams at low seismic levels, easily replaced after an earthquake. In this study, an innovative coupled steel plate shear wall with a yielding FUSE is presented. The system uses a high-ductility FUSE pin element instead of a link beam, which has good replaceability after the earthquake. In this study, four models of coupled steel plate shear walls were investigated with I-shaped link beam, I-shaped link beam with reduced beam section (RBS), box-link beam with RBS, and FUSE pin element under cyclic loading. The finite element method was used through ABAQUS software to develop the C-SPSW models. Two test specimens of coupled steel plate shear walls were validated to verify the finite element method results. Comparative results of the hysteresis curves obtained from the finite element analysis with the experimental curves indicated that the finite element model offered a good prediction of the hysteresis behavior of C-SPSW. It is demonstrated in this study that the FUSE pin can improve and increase the strength and energy dissipation of a C-SPSW system by 19% and 20%, respectively.


2018 ◽  
Vol 22 (6) ◽  
pp. 1312-1328 ◽  
Author(s):  
Jianyang Xue ◽  
Rui Guo ◽  
Liangjie Qi ◽  
Dan Xu

The majority of existing ancient timber structures have different degrees of damage. The looseness of mortise-tenon joints is a kind of typical damage type. In order to study the influence of looseness on the seismic performance of mortise-tenon joints, six through-tenon joints and six dovetail-tenon joints with scale 1:3.2 were fabricated according to the requirements of the engineering fabrication method of Chinese Qing Dynasty. Each type of joints consisted of one intact joint and five artificial loose joints, and the artificial defect was made to simulate looseness by cutting the tenon sectional dimension. Based on experiments of two types of joints under low-cyclic reversed loading, the seismic behaviors of joints such as failure modes, hysteretic loops and skeleton curves, strength and stiffness degradation, and energy dissipation capacity were studied. Moreover, the comparative analyses of seismic performance between two types of joints were carried out. The variation tendency of seismic behaviors of two types of joints has similarities, and there are some differences due to their different structural styles. The results indicate that squeeze deformation between tenon and mortise of two types of joints occurred. The shape of hysteretic loops of two types of joints is reverse-Z-shape, and the pinching effect of hysteretic loops becomes more obvious with the increase in looseness, among which of through-tenon joints is more obvious than that of dovetail-tenon joints. The carrying capacity, stiffness, and energy dissipation capacity of loose joints are significantly lower than that of the intact one, and the energy dissipation capacity of dovetail-tenon joints is better than that of through-tenon joints. The rotation angles of two types of joints can reach 0.12 rad, and the loose joints still have great deformation capacity.


2019 ◽  
Vol 11 (1) ◽  
pp. 168781401881990 ◽  
Author(s):  
Hui-Yong Guo ◽  
He-Fa Yuan ◽  
Qi Huang

It is difficult for the traditional methods to identify uncertain damage problems caused by noise. Therefore, a gray cloud rule generator algorithm based on cloud model and modal strain energy is presented to solve the problems. Cloud model can simulate both randomness and fuzziness with fixed parameters. Therefore, it is applicable for the uncertain damage problems. First, modal strain energy and modal strain energy dissipation ratio index are introduced. Then, numerical characteristics of a cloud model are described and some cloud generators are analyzed. Finally, a gray cloud rule is proposed and the gray cloud rule generator algorithm based on the gray cloud rule generator and modal strain energy is developed. The interference of uncertain noise is reduced through a large number of cloud droplets. A two-dimensional truss structure model has been used to verify the effectiveness of the algorithm. The results indicate that the proposed gray cloud rule generator algorithm is applicable to identify the uncertain damage caused by noise, and the identification results of the proposed method are relatively better than those of modal strain energy dissipation ratio index.


2019 ◽  
Vol 9 (7) ◽  
pp. 1456 ◽  
Author(s):  
Wenwei Yang ◽  
Ruhao Yan ◽  
Yaqi Suo ◽  
Guoqing Zhang ◽  
Bo Huang

Due to the insufficient radial stiffness of the steel tube, the cracking of the weld and the plastic deformation of the string often occur under the cyclic loading of the hollow section pipe joint. In order to avoid such a failure, the overlapped K-joints were strengthened by pouring different concrete into the chords. Furthermore, to explore the detailed effect of filling different concrete in a chord on the hysteretic behavior of the overlapped K-joints, six full-scale specimens were fabricated by two forms, which included the circular chord and braces, the square chord and circular braces, and the low cyclic loading tests, which were carried out. The failure modes, hysteretic curves and skeleton curves of the joints were obtained, and the bearing capacity, ductility and energy dissipation of the joints were evaluated quantitatively. The results showed that plastic failure occurs on the surface of the chord of the joints without filling concrete, while the failure mode of the joints filled with concrete in the chords was the tensile failure of the chords at the weld of the brace toe, and the compressive braces had a certain buckling deformation; The strengthening measures of concrete filled with chord can effectively improve the mechanical properties of the K-joints, the delay of the plastic deformation of the chord, and improve the bearing capacity of the K-joints. Contrarily, the ductility coefficient and the energy dissipation ratio of K-joints decreased with the concrete filled in the chord. The hysteretic behavior of the K-joints with a circular chord and brace was slightly better than that of the K-joints with a square chord and circular brace, and the hysteretic behavior of the K-joints strengthened with fly ash concrete, which was better than that of the K-joints strengthened with ordinary concrete. The results of ANSYS (a large general finite element analysis software developed by ANSYS Company in the United States) analysis agreed well with the experimental results.


2016 ◽  
Vol 94 (6) ◽  
pp. 458-462
Author(s):  
L. K. Brizhan’ ◽  
A. V. Boichenko ◽  
D. V. Davydov ◽  
L. N. Solomin ◽  
A. A. Kerimov ◽  
...  

Background. The aim of the present article was to report our experience with the treatment ofpatients with hallux valgus and to perform comparative analysis of the results of the newly proposed and standard methods for its surgical correction. Methods. The data on 70patients (101 feet) with hallux valgus that were operated on between 2011 and 2015 in St. Petersburg Hospital No 2 using the new and standard methods were analysed. The functional assessment (AOFAS score) and X-ray examination were performed preoperatively, 3 and 12 months after the procedure. Comparative analysis between patients undergoing surgical correction by the new and standard methods has been undertaken. Results. We did not find any significant difference between the two groups in mean AOFAS score 12 months after surgery. Nevertheless, the function score of the patients treated by the newly proposed method (79.4±6.5 in 3 months) was significantly better than in those given the standard treatment (72.2±7.6 in 3 months). Mean intermetatarsal angle 12 months after surgery by standard and new methods was 9,7±0,7° and 8,6±0,7° (p<0.05), mean metatarsophalangeal angle 13,6±0,9° and 13,0±1,1° (p<0,05) respectively. Conclusion. According to the data obtained, the original method of hallux valgus surgical correction allows to improve its functional and x-ray results.


2016 ◽  
Vol 61 (2) ◽  
pp. 341 ◽  
Author(s):  
Baizid Benahmed ◽  
Malek Hammoutene ◽  
Donatello Cardone

It is apparent that the dynamic response of a building dependson its energy dissipation capacity, hence damping ratio. Thedamping value experienced by a building during an earthquakediffers significantly from the value specified in the design step.This introduces uncertainties in the design process of the building.It would be desirable to consider not only the effects ofuncertainties in loading but also the uncertainties in the structuralparameters. In this paper, the effects of uncertainties in the estimation ofdamping ratio ξ, on the use of Damping Reduction Factors (DRF) for the evaluation of high damping response spectra,are examined. Damping uncertainties are described by a lognormalprobability distribution, and the Monte Carlo techniqueis used to generate the random values of damping. Theaverage of the distribution is the deterministic value of damping (taken equal to 5%, 7.5%, 10%, 20%, 30% and 40%) whilethree different values of coefficient of variation are considered (i.e. 10%, 20% and 40%, respectively). All the DRF formulations found in the literature are not able totake into consideration damping uncertainties, leading to significantdiscrepancies in the high damping response spectra. Based on the results of this study, a new DRF formulation, ableto account for uncertainties in damping estimation, is tentatively proposed.


2011 ◽  
Vol 71-78 ◽  
pp. 526-530
Author(s):  
Xue Yuan Yan ◽  
Ai Qi ◽  
Wei Lin ◽  
Su Guo Wang

Construction and control principle of the new combined steel lead damper (NCSLD) were introduced, pseudo-static tests of NCSLD which would be used in the subsequent shaking table tests were carried out for the study of its mechanical properties using electro-hydraulic servo press-shear machine. Structural seismic design procedure using NCSLD is presented. An engineering example of seismic strengthening using NCSLD is provided. Results of tests and analyses indicate that NCSLD has full hysteresis loops which take on bilinearity; NCSLD is of strong energy dissipation ability and has obvious control effects for structural inter-story displacement and acceleration reactions.


2014 ◽  
Vol 919-921 ◽  
pp. 1812-1816 ◽  
Author(s):  
Quan Dong Xiao ◽  
Zheng Xing Guo

To study the seismic behavior of Double-Wall Precast Concrete (DWPC) shear wall, three full scale specimens are tested and compared under low-cyclic reversed loading, including two DWPC shear walls and one normal Cast-In-Situ (CIS) shear wall. By observing their experimental phenomena and failure modes, contrasting their displacement ductility coefficients, hysteretic curves, skeleton curves and energy dissipation capacity, the seismic behavior were synthetically evaluated on aspects of strength, stiffness, ductility and energy dissipation. Compared with CIS specimen, DWPC specimens have higher initial stiffness, increased cracking loads by 43% to 47%, and the ultimate loads increased by 22% to 23%. The displacement ductility ratios also meet the ductility requirements with value of 5. The hysteretic curves of three specimens are plump, and the trend of skeleton curves is basically the same. The DWPC specimens demonstrated a good energy dissipation capacity. All the specimens had shown favorable seismic performance.


Sign in / Sign up

Export Citation Format

Share Document