Research on Design Method of Combined Steel Lead Energy Dissipation Structure

2011 ◽  
Vol 71-78 ◽  
pp. 526-530
Author(s):  
Xue Yuan Yan ◽  
Ai Qi ◽  
Wei Lin ◽  
Su Guo Wang

Construction and control principle of the new combined steel lead damper (NCSLD) were introduced, pseudo-static tests of NCSLD which would be used in the subsequent shaking table tests were carried out for the study of its mechanical properties using electro-hydraulic servo press-shear machine. Structural seismic design procedure using NCSLD is presented. An engineering example of seismic strengthening using NCSLD is provided. Results of tests and analyses indicate that NCSLD has full hysteresis loops which take on bilinearity; NCSLD is of strong energy dissipation ability and has obvious control effects for structural inter-story displacement and acceleration reactions.

Author(s):  
Tsunehiro Wakasugi ◽  
Toru Watanabe ◽  
Kazuto Seto

This paper deals with a new system design method for motion and vibration control of a three-dimensional flexible shaking table. An integrated modeling and controller design procedure for flexible shaking table system is presented. An experimental three-dimensional shaking table is built. “Reduced-Order Physical Model” procedure is adopted. A state equation system model is composed and a feedback controller is designed by applying LQI control law to achieve simultaneous motion and vibration control. Adding a feedforward, two-degree-of-freedom control system is designed. Computer simulations and control experiments are carried out and the effectiveness of the presented procedure is investigated. The robustness of the system is also investigated.


2010 ◽  
Vol 44-47 ◽  
pp. 1355-1359 ◽  
Author(s):  
Xiang Xu ◽  
Zhi Xiong Li ◽  
Hong Ling Qin

Since electro-hydraulic servo system has fast response and highest control accuracy, it has been widely used in industrial application, including aircraft, mining, manufacturing, and agriculture, etc. With the fast development of computer science, it is feasible and available to evaluate the performance of the designed control system via virtual simulation before the practical usage of the system. In order to optimize the design procedure of the electro-hydraulic proportional controller, the co-simulation design method based on AMESim-Matlab is presented for the electro-hydraulic servo system in this paper. High accuracy of the mathematical model of electro-hydraulic servo system was full-fitted by the use of AMESim, and the advantage of high solving precision for large amount of calculation was full played using Matlab. The PID controller was employed to realize the efficient control of the motion of the hydraulic cylinder. The united simulation technique was adopted to verify the good performance of the designed control system. The simulation results suggest that the proposed method is effective for the design of electro-hydraulic servo systems and thus has application importance.


2012 ◽  
Vol 204-208 ◽  
pp. 1150-1153
Author(s):  
Min Chen ◽  
Guo Jing He ◽  
Chang Liu

Energy dissipation structure is favored by designers because the earthquake energy can be dissipated by the dampers, which can avoid or reduce the damage caused by earthquake. However, the energy dissipation structure design is complex and the most domestic designers can not master it easily. In this paper, a simple and practicable design method for viscous damper dissipation structure by using the PKPM design software is proposed based on a 7-storey frame structure in highly seismic region. Firstly, lower half or one degree for the design intensity to design out an uncontrolled structure. Secondly, determine the supplemental damping ratio required for the fortification intensity via modal analysis method of PKPM software, and identify the numbers of the required dampers as well as their corresponding installation positions in line with the methods in the seismic code of China. Finally, the ETABS program is adopted to conduct the time-history analysis of the designed dissipation structure, showing that the proposed method in this paper can produce a satisfied result.


BioResources ◽  
2020 ◽  
Vol 15 (2) ◽  
pp. 3504-3523
Author(s):  
Yanhua Wang ◽  
Yan Feng ◽  
Zirui Huang ◽  
Zhongfan Chen

Pseudo-static tests of a novel energy-dissipation connection, comprised of a hinge and two steel brackets, have proven their reliability and superior energy-dissipation capability. To verify the effectiveness of the connection further, a full-scale one-story one-bay engineered bamboo-steel hybrid frame jointed with the novel energy-dissipation connections was investigated through experimental test and finite element analysis (FEA) in this paper. The experimental results showed that the failure mode of the frame was restricted in the local buckling of the energy-dissipation panels (EDPs) in the innovative connections, whereas no obvious damage was observed in the other components of the frame. The hysteresis loops of the frame with energy dissipation connections revealed less pinching. Thus, the ductility and damping ratio of the engineered bamboo-steel frame can reach 1.46 and 14.1%, respectively. Based on the analysis of effectual simulation models in ABAQUS software, the relationship between the initial stiffness, the peak load, the ductility ratio of the hybrid frame and the size of EDP was studied. Recommendations are made for the design of the EDPs.


Robotica ◽  
2014 ◽  
Vol 34 (2) ◽  
pp. 258-273 ◽  
Author(s):  
Belkacem Bounab

SUMMARYThis paper addresses the dimensional-synthesis-based kineto-elastostatic performance optimization of thedeltaparallel mechanism. For the manipulator studied here, the main consideration for the optimization criteria is to find the maximum regular workspace where the robotdeltamust posses high stiffness and dexterity. The dexterity is a kinetostatic quality measure that is related to joint's stiffness and control accuracy. In this study, we use the Castigliano's energetic theorem for modeling the elastostatic behavior of thedeltaparallel robot, which can be evaluated by the mechanism's response to external applied wrench under static equilibrium. In the proposed formulation of the design problem, global structure's stiffness and global dexterity are considered together for the simultaneous optimization. Therefore, we formulate the design problem as a multi-objective optimization one and, we use evolutionary genetic algorithms to find all possible trade-offs among multiple cost functions that conflict with each other. The proposed design procedure is developed through the implementation of thedeltarobot and, numerical results show the effectiveness of the proposed design method to enhancing kineto-elastostatic performance of the studied manipulator's structure.


Author(s):  
Zirui Huang ◽  
Dongsheng Huang ◽  
Yanhua Wang ◽  
Yan Feng

This paper presents a novel bamboo/wood-steel hybrid frame which uses engineered bamboo products as beams and steel as columns. The beams and columns are jointed by an innovative connection which incorporates a steel hinge and two steel brackets to carry shear force and moment from the end of beam, respectively. The bracket consists of two segments, i.e. joint segment connected to beam and the other segment, which serves as energy dissipation panel (EDP), connected to the columns via a base panel. By this way, the connection can provide sufficient initial stiffness for serviceability requirements and excellent energy dissipation capacity for seismic performances. Lateral cyclic loading tests were conducted to investigate the seismic performances of the frame. It was found that hysteresis loops of the frame with energy dissipation joints show less pinching than that of frames with dowel- or bolt-type connections; by proper designing, the damage and failure of the frame can be restricted in the EDPs of connections, whereas virtually no damage was observed in the other components of the frame; the connection can provide more than 10 % damping for the frame after the yielding of EDPs. Design method is also proposed in this paper.


Author(s):  
Mathias Stefan Roeser ◽  
Nicolas Fezans

AbstractA flight test campaign for system identification is a costly and time-consuming task. Models derived from wind tunnel experiments and CFD calculations must be validated and/or updated with flight data to match the real aircraft stability and control characteristics. Classical maneuvers for system identification are mostly one-surface-at-a-time inputs and need to be performed several times at each flight condition. Various methods for defining very rich multi-axis maneuvers, for instance based on multisine/sum of sines signals, already exist. A new design method based on the wavelet transform allowing the definition of multi-axis inputs in the time-frequency domain has been developed. The compact representation chosen allows the user to define fairly complex maneuvers with very few parameters. This method is demonstrated using simulated flight test data from a high-quality Airbus A320 dynamic model. System identification is then performed with this data, and the results show that aerodynamic parameters can still be accurately estimated from these fairly simple multi-axis maneuvers.


Open Physics ◽  
2020 ◽  
Vol 18 (1) ◽  
pp. 631-641
Author(s):  
Shujuan Yang

AbstractIn view of the problem of large earthquake displacement in the use of the original concrete engineering shear wall reinforcement method, the energy dissipation and damping structure is used to design the energy dissipation and damping structure reinforcement method in the concrete engineering shear wall. According to the design process of the set method, the anti-vibration coefficient of the concrete shear wall is tested. The energy dissipation structure is used to construct a shear damping wall, and the damper is added to the original shear wall. The concrete shear wall is strengthened by sticking steel technology. So far, the design of shear wall reinforcement method based on the energy dissipation structure has been completed. Compared with the original method, the displacement distance of this method is lower than that of the original method. In conclusion, the effect of shear wall reinforcement method based on the energy dissipation structure is better than that of the original method.


2021 ◽  
Vol 11 (7) ◽  
pp. 3017
Author(s):  
Qiang Gao ◽  
Siyu Gao ◽  
Lihua Lu ◽  
Min Zhu ◽  
Feihu Zhang

The fluid–structure interaction (FSI) effect has a significant impact on the static and dynamic performance of aerostatic spindles, which should be fully considered when developing a new product. To enhance the overall performance of aerostatic spindles, a two-round optimization design method for aerostatic spindles considering the FSI effect is proposed in this article. An aerostatic spindle is optimized to elaborate the design procedure of the proposed method. In the first-round design, the geometrical parameters of the aerostatic bearing were optimized to improve its stiffness. Then, the key structural dimension of the aerostatic spindle is optimized in the second-round design to improve the natural frequency of the spindle. Finally, optimal design parameters are acquired and experimentally verified. This research guides the optimal design of aerostatic spindles considering the FSI effect.


2014 ◽  
Vol 687-691 ◽  
pp. 3102-3105
Author(s):  
Qin Zhang

Integration with Internet is the development tendency of industrial control network, and embedded Internet technique is the key of implementation. By analyzing field bus Technology and combining actual demand, the paper proposes dial-up high-density programmable logic device solution of remote embedded measurement and control equipment. For the purpose of implementing reuse of design modules and upgrading requirement, the paper systematically expounds top-down hierarchy design method for implementing functional module division. According to the difference of implementation complexity because of the difference of functions, the paper finally analyzes the characteristics and applications of programmable device, and proposes the improvement direction.


Sign in / Sign up

Export Citation Format

Share Document