Preparation and properties of sodium alginate films

2013 ◽  
Vol 33 (9) ◽  
pp. 829-836 ◽  
Author(s):  
Haydar U. Zaman ◽  
Md. Dalour Hossen Beg

Abstract Sodium alginate (SA) films were prepared by casting from methanol (MeOH) solutions and their tensile properties, like tensile strength (TS) and elongation at break (Eb %), were monitored. The resulting films of SA were photocured with vinyltriethoxysilane [H2C=CH–Si–(OC2H5)3] in order to improve the tensile properties. Several acrylic monomers of different functionalities as additives (2%), like ethyl acrylate (EA), 2-hydroxyethyl acrylate (2-HEA), and tripropylene glycol diacrylate (TPGDA), were incorporated with silane with the aid of UV radiation. Further analyses of the prepared films were characterized by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and a TS test. FTIR studies indicate that there are intermolecular hydrogen bonding interactions, i.e., –OH·····O=C in silane/SA blends. This blend films also exhibited the higher thermal stability and improved the tensile properties of the films. Degradation of SA by UV spectrometry induces time-dependent degradation.

2013 ◽  
Vol 747 ◽  
pp. 673-677 ◽  
Author(s):  
Worasak Phetwarotai ◽  
Duangdao Aht-Ong

Biodegradable ternary blend films of nucleated polylactide (PLA), poly (butylene adipate-co-terephthalate) (PBAT), and thermoplastic starch (TPS) with the presence of nucleating agent and compatibilizer were prepared via a twin screw extruder. The effects of compatibilizer types and starch contents on the thermal, morphological, and tensile properties of these blend films were evaluated. Two types of compatibilizer (methylene diphenyldiisocyanate (MDI) and polylactide-graft-maleic anhydride (PLA-g-MA)) were used for enhancing an interfacial adhesion of the blends, whereas TPS from tapioca starch was added as a filler at various concentrations (0 to 40 wt%). In addition, talc and PBAT acted as a nucleating agent and a flexible polymer were fixed at 1 phr and 10 wt%, respectively. The results indicated that the thermal stability of the blend films was affected from the presence of compatibilizer and TPS. In addition, the tensile properties and compatibility of PLA, PBAT, and TPS blends were improved with the addition of compatibilizer compared to uncompatibilized blend films as evidenced by SEM results. Furthermore, the blend films with MDI gave higher mechanical properties than those with PLA-g-MA at all compositions. The water absorption of the ternary blend films was evidently increased when the TPS amount was increased; in contrast, tensile strength and elongation at break (EB) of these blend films were significantly decreased.


2020 ◽  
pp. 096739112097288
Author(s):  
Sohan Lal ◽  
Vinod Kumar ◽  
Sanjiv Arora

The present study described reduces of plastic based non-biodegradable food packaging material and sustainability toward the environmental protection. The polyvinyl alcohol (PVA) based ternary blend biodegradable films with bio-materials (corn starch and pectin) in ratio 1:5, 1:2, 1:1 and 2:1 were synthesized by solution casting method in water as a solvent to improve the tensile strength, high % elongation at break, and sustained packaging properties. Citric acid and glycerol were used for cross-linking and plasticizing purposes which are also bio-degradable and non-toxic. Blend films were characterized by FTIR and checked out the cross-linking of different components. The dispersion of contents in films was analyzed by SEM images. Thermal stability and degradation behavior of casted films were studied with thermogravimetry and thermal stability increased in blends as compared to neat PVA film. Biodegradability of cast films was also checked by Soil Burial method and bio-degradation increased with time i.e. almost 50% degrades in 30 days and 68% after 90 days. Tensile properties of blend films were tested and found that tensile strength (18.85 MPa) and elongation at break (516%) are high in blend films as compared with neat PVA film (12.04 MPa, 170%). The films are eco-friendly and biodegradable, might be a replacement of plastic material in food packaging having improved tensile properties.


Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2381
Author(s):  
Katarzyna Bialik-Wąs ◽  
Ewelina Królicka ◽  
Dagmara Malina

Here, we report on studies on the influence of different crosslinking methods (ionic and chemical) on the physicochemical (swelling ability and degradation in simulated body fluids), structural (FT-IR spectra analysis) and morphological (SEM analysis) properties of SA/PVA hydrogels containing active substances of natural origin. First, an aqueous extract of Echinacea purpurea was prepared using a Soxhlet apparatus. Next, a series of modified SA/PVA-based hydrogels were obtained through the chemical crosslinking method using poly(ethylene glycol) diacrylate (PEGDA, Mn = 700 g/mol) as a crosslinking agent and, additionally, the ionic reaction in the presence of a 5% w/v calcium chloride solution. The compositions of SA/PVA/E. purpurea-based hydrogels contained a polymer of natural origin—sodium alginate (SA, 1.5% solution)—and a synthetic polymer—poly(vinyl alcohol) (PVA, Mn = 72,000 g/mol, 10% solution)—in the ratio 2:1, and different amounts of the aqueous extract of E. purpurea—5, 10, 15 or 20% (v/v). Additionally, the release behavior of echinacoside from the polymeric matrix was evaluated in phosphate-buffered saline (PBS) at 37 °C. The results indicate that the type of the crosslinking method has a direct impact on the release profile. Consequently, it is possible to design a system that delivers an active substance in a way that depends on the application.


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1298
Author(s):  
Jong Won Kim ◽  
Seon Ju Lee ◽  
Moon Young Choi ◽  
Jin-Hae Chang

4,4′-(4,4′-isopropylidenediphenoxy)bis(phthalic anhydride) (BPADA) as a dianhydride and bis(3-aminophenyl) sulfone (APS) and bis(3-amino-4-hydroxyphenyl) sulfone (APS-OH) as diamines were used to synthesize two types of poly(amic acid) (PAA). Varying amounts (0–5.0 wt%) of water-soluble poly(vinyl alcohol) (PVA) were mixed with PAA, and the resulting blend was heat-treated at different stages to obtain the colorless and transparent polyimide (CPI) blend films. The synthesized blended film completely removed water-soluble PVA in water. The possibility as a porous membrane according to the pore size varied according to the amount of PVA was investigated. The dispersibility and compatibility of CPI containing APS-OH monomer were higher than those of the APS monomer. This could be attributed to the hydrogen-bonding interactions between the CPI main chains and PVA. Scanning electron microscopy was conducted to characterize the material. The results revealed that the pore size of the CPI blend film increased as the PVA concentration increased. It was confirmed that uniform pores of μm-size were observed in CPI. The thermal stabilities, morphologies, optical properties, and solubilities of two CPIs obtained using APS and APS-OH monomers were investigated and their properties were compared with each other.


BioResources ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. 5780-5793
Author(s):  
Ji-Soo Park ◽  
Chan-Woo Park ◽  
Song-Yi Han ◽  
Eun-Ah Lee ◽  
Azelia Wulan Cindradewi ◽  
...  

Cellulose nanocrystals (CNCs) were wet-spun in a coagulation bath for the fabrication of microfilaments, and the effect of sodium alginate (AL) addition on the wet-spinnability and properties of the microcomposite filament was investigated. The CNC suspension exhibited excellent wet-spinnability in calcium chloride (CaCl2) solution, and the addition of AL in CNC suspension resulted in the enhancement of the wet-spinnability of CNCs. As the AL content increased from 3% to 10%, the average diameter of the microcomposite filament decreased, and its tensile properties deteriorated. The increased spinning rate caused an increase in the orientation index of CNCs, resulting in an improvement in the tensile properties of the microcomposite filament.


2013 ◽  
Vol 747 ◽  
pp. 645-648 ◽  
Author(s):  
Koay Seong Chun ◽  
Salmah Husseinsyah ◽  
Hakimah Osman

Polypropylene/Cocoa Pod Husk (PP/CPH) biocomposites with different maleated polypropylene (MAPP) content were prepared via melt blending process using Brabender Plastrograph mixer. The tensile strength and tensile modulus of PP/CPH biocomposites increased with increasing of MAPP content. The PP/CPH biocomposites with 5 phr of MAPP showed the optimum improvement on tensile properties. However, the increased of MAPP content reduced the elongation at break of PP/CPH biocomposites. At 5 phr of MAPP content, PP/CPH biocomposites showed lowest elongation at break. Scanning electron microscope confirms the PP/CPH biocomposites with MAPP have better filler-matrix interaction and adhesion due to the effect of MAPP.


2018 ◽  
Vol 34 ◽  
pp. 01030 ◽  
Author(s):  
Indra Surya ◽  
Syahrul Fauzi Siregar ◽  
Hanafi Ismail

Effects of alkanolamide (ALK) addition on cure characteristics, swelling behaviour and tensile properties of silica-filled natural rubber (NR)/chloroprene rubber (CR) blends were investigated. The ALK was synthesized from Refined Bleached Deodorized Palm Stearin (RBDPS) and diethanolamine, and incorporated into the silica-filled NR/CR blends as a non-toxic rubber additive. The ALK loadings were 0.0, 1.0, 3.0, 5.0 and 7.0 phr. It was found that the ALK exhibited shorter scorch and cure times and higher elongation at break of the silica-filled NR/CR blends. The ALK also exhibited higher torque differences, tensile modulus and tensile strength at a 1.0 phr of ALK loading and then decreased with further increases in the ALK loading. The swelling measurement proved that the 1.0 phr loading of ALK caused the highest degree in crosslink density of the silica-filled NR/CR blends.


2019 ◽  
Vol 41 (5) ◽  
pp. 690-698 ◽  
Author(s):  
Svetlana R. Derkach ◽  
Nikolay G. Voron’ko ◽  
Nina I. Sokolan ◽  
Daria S. Kolotova ◽  
Yulia A. Kuchina
Keyword(s):  

Polymers ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1897
Author(s):  
Hui Yang ◽  
Haijun Ji ◽  
Xinxin Zhou ◽  
Weiwei Lei ◽  
Liqun Zhang ◽  
...  

A novel elastomer poly(diethyl itaconate-co-butyl acrylate-co-ethyl acrylate-co-glycidyl methacrylate) (PDEBEG) was designed and synthesized by redox emulsion polymerization based on bio-based diethyl itaconate, butyl acrylate, ethyl acrylate, and glycidyl methacrylate. The PDEBEG has a number average molecular weight of more than 200,000 and the yield is up to 96%. It is easy to control the glass transition temperature of the PDEBEG, which is ranged from −25.2 to −0.8 °C, by adjusting the monomer ratio. We prepared PDEBEG/CB composites by mixing PDEBEG with carbon black N330 and studied the oil resistance of the composites. The results show that the tensile strength and the elongation at break of the composites with 10 wt% diethyl itaconate can reach up to 14.5 MPa and 305%, respectively. The mechanical properties and high-temperature oil resistance of the composites are superior to that of the commercially available acrylate rubber AR72LS.


2013 ◽  
Vol 795 ◽  
pp. 582-586 ◽  
Author(s):  
M.I.M. Yazid ◽  
A.G. Supri ◽  
Z. Firuz ◽  
Luqman Musa

The effects of benzyl urea into RHDPE/NR/CFF composites with different fibers loading were studied. The composites were prepared using BrabenderPlasticorder at 160 °C with rotor speed of 50rpm. The composites were characterized in respect of their tensile properties and morphology. The results indicated that RHDPE/NR/CFF with benzyl urea composites show higher values of tensile strength, Youngs modulus, but lower elongation at break than RHDPE/NR/CFF composites. RHDPE/NR/CFF with benzyl urea composites gave a better interfacial adhesion between the matrix and the fiber than RHDPE/NR/CFF composites as evidence using SEM.


Sign in / Sign up

Export Citation Format

Share Document