Use of diisocyanate to enhance the flame-retardant, mechanical and crystalline properties of poly (butylene succinate-co-butylene 3-hydroxyphenylphosphinyl-propionate) (PBSH)

2020 ◽  
Vol 40 (5) ◽  
pp. 409-414
Author(s):  
Tian-Xiang Jin ◽  
Miao-miao Wu ◽  
Jin-bo Ou-yang ◽  
Qin Zhang

AbstractPoly (butylene succinate-co-butylene-3-hydroxyphenylphosphinyl-propionate) (PBSH) was synthesized through polycondensation. Then, 4,4′-methylene diphenyl diisocyanate (MDI) was introduced into PBSH matrix by reactive blending. The chemical structure and properties of the blending products were investigated using Fourier Transform Infrared Spectroscopy (FT-IR), differential scanning calorimetry (DSC), limiting oxygen index (LOI) tests, thermogravimetric analysis (TGA), and vertical burning tests. The results proved that MDI can improve the mechanical properties and flame retardancy of PBSH. In addition, it was found that the crosslinking structure can reduce the hydrolysis rate of PBSH and effectively eliminate the melt-dripping of PBSH during combustion.

2018 ◽  
Vol 49 (2) ◽  
pp. 141-161 ◽  
Author(s):  
Raziye Atakan ◽  
Azize Bical ◽  
Ebru Celebi ◽  
Gulay Ozcan ◽  
Neda Soydan ◽  
...  

A novel polymeric flame retardant with phosphorous–nitrogen synergism (PVP (PR)-P-DCDA) was synthesized by polyvinyl alcohol, hydrophilic polyester resin, phosphoric acid, and dicyandiamide. 100% polyester, 100% cotton, and 50/50% cotton–polyester blended fabrics were treated with PVP (PR)-P-DCDA by impregnation method. Flammability characteristics, thermal decomposition, surface morphology, and chemical structure of treated and untreated fabrics were investigated by vertical flammability test, limiting oxygen index, differential scanning calorimetry, thermogravimetric analysis, scanning electron microscopy, and Fourier-transform infrared, respectively. Results showed that PVP (PR)-P-DCDA is an eco-friendly flame retardant system, a good char-forming flame retardant agent with superior ease of application for cotton, polyester, and cotton/polyester blends. At the industrial scale, the flame retardant agent PVP (PR)-PDCDA has been commercialized under the name Fire-off EBR.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7720
Author(s):  
Joanna Rokicka ◽  
Katarzyna Wilpiszewska ◽  
Jolanta Janik ◽  
Beata Schmidt ◽  
Anton Nikiforov ◽  
...  

A three series of terpolymers composed of the blocks PTMO (MPTMO = 1000 g/mol) or DLAol (MDLAol = 540 g/mol), PA12 (MPA12 = 2000 g/mol) and xGT (DPxGT = 2) with various chemical compositions of ester block were obtained. The series differ in the chemical structure of the flexible block and weight content of the soft phase. The effect of the number of carbons dividing the terephthalate groups on the synthesis, structure and properties of these elastomers has been investigated. To confirm assumed chemical structure Carbon-13 (13C NMR) and Proton (1H NMR) Nuclear Magnetic Resonance and Fourier-transform Infrared Spectroscopy (FT-IR) were used. The influence of chemical compositions of ester block on the thermal properties and the phase separation of obtained systems were defined by Differential Scanning Calorimetry (DSC), Dynamic Mechanical Thermal Analysis (DMTA) and Wide Angle X-ray Scattering (WAXS). The mechanical and elastic properties were evaluated.


2020 ◽  
Vol 17 (10) ◽  
pp. 760-771
Author(s):  
Qirui Gong ◽  
Niangui Wang ◽  
Kaibo Zhang ◽  
Shizhao Huang ◽  
Yuhan Wang

A phosphaphenanthrene groups containing soybean oil based polyol (DSBP) was synthesized by epoxidized soybean oil (ESO) and 9,10-dihydro-oxa-10-phosphaphenanthrene-10-oxide (DOPO). Soybean oil based polyol (HSBP) was synthesized by ESO and H2O. The chemical structure of DSBP and HSBP were characterized with FT-IR and 1H NMR. The corresponding rigid polyurethane foams (RPUFs) were prepared by mixing DSBP with HSBP. The results revealed apparent density and compression strength of RPUFs decreased with increasing the DSBP content. The cell structure of RPUFs was examined by scanning electron microscope (SEM) which displayed the cells as spherical or polyhedral. The thermal degradation and flame retardancy of RPUFs were investigated by thermogravimetric analysis, limiting oxygen index (LOI), and UL 94 vertical burning test. The degradation activation energy (Ea) of first degradation stage reduced from 80.05 kJ/mol to 37.84 kJ/mol with 80 wt% DSBP. The RUPF with 80 wt% DSBP achieved UL94 V-0 rating and LOI 28.3. The results showed that the flame retardant effect was mainly in both gas phase and condensed phase.


Materials ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 127 ◽  
Author(s):  
Yu Sun ◽  
Yazhen Wang ◽  
Li Liu ◽  
Tianyuan Xiao

A 9,10-dihydro-9-oxa-10-phosphaphenanthrene 10-oxide (DOPO) acrylate, (6-oxidodibenzo [c,e][1,2] oxaphosphinin-6-yl) methyl acrylate (DOPOAA), has been prepared. Copolymers of styrene (St) and DOPOAA were prepared by emulsion polymerization. The chemical structures of copolymers containing levels of DOPOAA were verified using Fourier transform infrared (FT-IR) spectroscopy and 1H nuclear magnetic resonance (1H-NMR) spectroscopy. The thermal properties and flame-retardant behaviors of DOPO-containing monomers and copolymers were observed using thermogravimetric analysis and micro calorimetry tests. From thermogravimetric analysis (TGA), it was found out that the T5% for decomposition of the copolymer was lower than that of polystyrene (PS), but the residue at 700 °C was higher than that of PS. The results from micro calorimetry (MCC) tests indicated that the rate for the heat release of the copolymer combustion was lower than that for PS. The limiting oxygen index (LOI) for combustion of the copolymer rose with increasing levels of DOPOAA. These data indicate that copolymerization of the phosphorus-containing flame-retardant monomer, DOPOAA, into a PS segment can effectively improve the thermal stability and flame retardancy of the copolymer.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1801
Author(s):  
Rafał Oliwa ◽  
Joanna Ryszkowska ◽  
Mariusz Oleksy ◽  
Monika Auguścik-Królikowska ◽  
Małgorzata Gzik ◽  
...  

We investigated the effect of the type and amount of expandable graphite (EG) and blackcurrant pomace (BCP) on the flammability, thermal stability, mechanical properties, physical, and chemical structure of viscoelastic polyurethane foams (VEF). For this purpose, the polyurethane foams containing EG, BCP, and EG with BCP were obtained. The content of EG varied in the range of 3–15 per hundred polyols (php), while the BCP content was 30 php. Based on the obtained results, it was found that the additional introduction of BCPs into EG-containing composites allows for an additive effect in improving the functional properties of viscoelastic polyurethane foams. As a result, the composite containing 30 php of BCP and 15 php of EG with the largest particle size and expanded volume shows the largest change in the studied parameters (hardness (H) = 2.65 kPa (+16.2%), limiting oxygen index (LOI) = 26% (+44.4%), and peak heat release rate (pHRR) = 15.5 kW/m2 (−87.4%)). In addition, this composite was characterized by the highest char yield (m600 = 17.9% (+44.1%)). In turn, the change in mechanical properties is related to a change in the physical and chemical structure of the foams as indicated by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) analysis.


2020 ◽  
Vol 977 ◽  
pp. 102-107
Author(s):  
Yu Lei Zheng ◽  
Shuang Chen ◽  
Jia Hui Wang ◽  
Ru Xiao

Polyamide 66 (PA66) benefits from excellent mechanical properties and good chemical resistance, which enabled wide application of this material in various industrial fields; however, it suffers from high flammability. Generally, preparation of a flame retardant PA from a reactive flame retardant involves a two-step process. In this study, the flame retardant PA66s (FRPA66s) are synthesized via a one-pot melt copolycondensation route by using a reactive phosphorus-containing flame retardant (FR-B). Then, molecular weight, some mechanical and thermal properties along with flame retardant properties of FRPA66s were investigated by gel permeation chromatography (GPC), instron material testing, differential scanning calorimetry (DSC), thermogravimetry (TG) analysis, vertical burning test (UL 94), and limiting oxygen index test (LOI) techniques. The experimental results confirmed that FRPA66s synthesized by the one-pot method have very similar properties compared to those obtained via the two-step process. Moreover, the prepared materials showed good non-flammability behavior with limiting oxygen index value of over 30% and a vertical burning test result of V-0 rating.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
M. P. Amaya-Gómez ◽  
L. M. Sanabria-Rivas ◽  
A. M. Díaz-Lasprilla ◽  
C. Ardila-Suárez ◽  
R. H. Castro-García ◽  
...  

Polymer and surfactant flooding are widely applied processes in enhanced oil recovery (EOR) in which viscous polymers or surfactants aqueous solutions are introduced in oil reservoirs to rise the recovery of the remaining oil. In this regard, one of the challenges of EOR practices is the use of efficient but low-cost viscosifier and surfactant polymers. This work is aimed at synthesizing a polyglycerol derived from the biodegradable and nontoxic monomer, glycerol, and evaluating the effect of its copolymerization on rheological and interfacial properties, which were tested in water and brine for the former and in the water/oil system for the last properties. The copolymers were synthesized using a polyglycerol backbone, acrylic acid, lactic acid, and oleic acid. The chemical structure of copolymers was characterized by Fourier transform infrared spectroscopy (FT-IR), thermogravimetry (TG), and differential scanning calorimetry (DSC). The viscosity and the interfacial tension (IFT) of polymeric solutions were tested. Thus, the viscosity and surface performance of the prepared polymer solutions in distilled water and brine were analyzed according to the structure of the synthesized polymers. The results showed that the synthesized polymers modified water viscosity and surface tension between water and oil. The developed polymers could be candidates for applications in enhanced oil recovery and related applications.


2021 ◽  
Author(s):  
Na Li ◽  
Panpan Chen ◽  
Dongni Liu ◽  
Gaowei Kang ◽  
Liu Liu ◽  
...  

Abstract Cotton fibers as original materials of cotton fabrics have a widely application due to its perfect hygroscopicity, air permeability and largest annual output. However, cotton materials have potential safety hazard during its application because of flammability (limiting oxygen index is about 18%). In order to improve the flame retardancy of cotton fibers and reduce the damage of its mechanical properties, novel P/Si based flame retardant (PFR) nanoparticles were synthesized by one-step radical polymerization. Vinyl phosphoric acid and tetramethyl divinyl disiloxane were introduced into the nanoparticles. The structure, morphology and thermal stability of PFR was characterized by fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FE-SEM), thermogravimetric analysis test (TGA). Durable flame retardant cotton fibers were prepared by dip-coating and plasma induced crosslinking methods. Micro-calorimeter (MCC) characterization showed that the peak of heat release rate (pHRR) and the total heat release were reduced by 47.3% and 29.8% for modified cotton fibers compared with pure cotton fibers. Limiting oxygen index (LOI) of modified cotton fibers was increased to 27%. The residue carbon of modified cotton fibers was 19.0% at 700 o C, while the value of pure cotton fibers was 3.0%. Besides, durability of the modified cotton fibers was approved by cyclic washing test. In addition, flame retardant mechanism was revealed by collecting and analyzing condensed and gaseous pyrolysis products. The data of FE-SEM for residue carbon, FT-IR spectra of products at different pyrolysis temperatures and pyrolysis gas chromatography mass spectrometry (Py-GC-MS) showed that PFR was a synergistic flame retardant contained barrier and quenching effecting applied on cotton materials.


2020 ◽  
Vol 15 ◽  
pp. 155892502092088
Author(s):  
Michael W Easson ◽  
Jacobs Harris Jordan ◽  
SeChin Chang ◽  
John M Bland ◽  
Brian Douglas Condon

Bisphenol-substituted spirocyclic phosphazene derivatives were synthesized in 85%–94% yields and analyzed for flame retardant application to cotton fabric using Limiting Oxygen Index, Fourier transform infrared thermogravimetric analysis, differential scanning calorimetry, microscale combustion calorimetry, thermogravimetric analysis, and scanning electron microscopy. The thermogravimetric analysis methods indicate a decomposition pathway consistent for phosphorus-nitrogen-containing compounds. Levoglucosan phosphorylation and carbonaceous char formation were observed. Limiting Oxygen Index testing of these compounds on cotton-based fabrics showed improved flame resistance compared to untreated fabrics.


2017 ◽  
Vol 728 ◽  
pp. 271-276
Author(s):  
Nantharat Phruksaphithak ◽  
Chalermkiet Kaewnun ◽  
Sompong O-Thong

Bacterial Cellulose (BC) was produced by Acetobacterxylinum TISTR 086 use mixing of oil palm shoot juices (OPSJ) and coconut juice (CJ) medium with or without nutrient supplemented or OPSJ was digested with α-amylase. Results showed the highest yield was obtained at OPSJ with CJ at mixing ratios of 50% (4.70±0.11 g/L) and the lowest yield was obtained at OPSJ with CJ at mixing ratios of 0% (3.54±0.11 g/L). OPSJ was digested with 1300 lU/gm at concentration enzyme 650 IU/L at 37 °C for 24 h has highest sugar concentration of 73.93±0.12 g/L. Amylase digested OPSJ mixed with coconut juice’s highest bacterial cellulose production at OPSJ with CJ at mixing ratios of 50% (4.94±0.13 g/L), respectively. Moreover, the BC obtained had molecular weight from 332,122 to 503,233 g/mol. The chemical structure of BC produced was studied using Fourier Transform Infrared Spectroscopy (FT-IR) and X-ray defections. The morphology of BC was investigated by Scanning Electron Microscopy (SEM). Thermal property was further studied using Differential Scanning Calorimetry (DSC) and Thermogravimetic Analysis (TGA). This study obviously showed the ability of OPSJ, a suitable and cheap carbon source, to be used as a substrate in a fermentation medium for production of cellulose by Acetobacterxylinum TISTR 086.


Sign in / Sign up

Export Citation Format

Share Document