Resizing: A Brief Review of Restoration and Conservation Literature from the 17th to the 21st Century

Author(s):  
Eva Hummert

Abstract From the first half of the seventeenth century until the beginning of the twentieth century resizing was common practice after each aqueous treatment to replace the loss of original sizing, but it is used much less frequently today. As already described in early sources, resizing in modern conservation practice still serves three main purposes: increasing mechanical stability, modifying the surface texture of abraded papers by decreasing their surface roughness and consolidating loosened fibres and preparing the paper substrate for inpainting. Today’s practice, however, differentiates more carefully between an improvement in mechanical stability and increased resistance to physical and chemical degradation processes. While previously almost exclusively protein glues were used for resizing, today gelatine and cellulose ethers are among the most commonly used sizing agents. The solution concentrations used for resizing have significantly decreased: gelatine is used in 0.5 % (w/v) to 1 % (w/v) solutions today, while historic literature recommends 1.6 % (w/v) to 3.5 % (w/v) protein glues. Concerning application techniques, mainly immersion, closely related to tub sizing used during paper manufacture and local or overall brush applications were used for historic sizing. Spraying, which was introduced at the beginning of the second half of the twentieth century, is recommended for resizing drawings to prevent friable media from being smudged.

2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Depeng Wang ◽  
Shufang Zhao ◽  
Ruiyang Yin ◽  
Linlin Li ◽  
Zheng Lou ◽  
...  

AbstractDiversified regulation of electrons have received much attention to realize a multi-functional transistor, and it is crucial to have a considerable control over the charge carriers in transistors. Ionic gel, as the dielectric material in transistors, facilitates a large capacitance, and high induced-carrier concentrations. This review presents the recent progress in ionic-gated transistors (IGTs) that have good mechanical stability as well as high physical and chemical stability. We first briefly introduce the various applications of IGTs in sensors, neuromorphic transistors, organic transistor circuits, and health detection. Finally, the future perspectives of IGTs are discussed and some possible solutions to the challenges are also proposed.


Polymers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 1939
Author(s):  
Helyati Abu Hassan Shaari ◽  
Muhammad Mahyiddin Ramli ◽  
Mohd Nazim Mohtar ◽  
Norizah Abdul Rahman ◽  
Azizan Ahmad

Poly(methyl methacrylate) (PMMA) is a lightweight insulating polymer that possesses good mechanical stability. On the other hand, polyaniline (PANi) is one of the most favorable conducting materials to be used, as it is easily synthesized, cost-effective, and has good conductivity. However, most organic solvents have restricted potential applications due to poor mechanical properties and dispersibility. Compared to PANi, PMMA has more outstanding physical and chemical properties, such as good dimensional stability and better molecular interactions between the monomers. To date, many research studies have focused on incorporating PANi into PMMA. In this review, the properties and suitability of PANi as a conducting material are briefly reviewed. The major parts of this paper reviewed different approaches to incorporating PANi into PMMA, as well as evaluating the modifications to improve its conductivity. Finally, the polymerization condition to prepare PMMA/PANi copolymer to improve its conductivity is also discussed.


Author(s):  
Raha Saremi ◽  
Nikolay Borodinov ◽  
Amine Mohamed Laradji ◽  
Suraj Sharma ◽  
Igor Luzinov ◽  
...  

Renewable nanocellulose materials received increased attention owing to their small dimensions, high specific surface area, high mechanical characteristics, biocompatibility, and compostability. Nanocellulose coatings are among many interesting applications of these materials to functionalize different by composition and structure surfaces, including plastics, polymer coatings, and textiles with broader applications from food packaging to smart textiles. Variations in porosity and thickness of nanocellulose coatings are used to adjust a load of functional molecules and particles into the coatings, their permeability, and filtration properties. Mechanical stability of nanocellulose coatings in a wet and dry state are critical characteristics for many applications. In this work, nanofibrillated and nanocrystalline cellulose coatings deposited on the surface of polymer films and textiles made of cellulose, polyester, and nylon are studied using atomic force microscopy, ellipsometry, and T-peel adhesion tests. Methods to improve coatings adhesion and stability using physical and chemical cross-linking with added polymers and polycarboxylic acids are analyzed in this study. The paper reports on the effect of the substrate structure and ability of nanocellulose particles to intercalate into the substrate on the coating adhesion.


Author(s):  
S.Z.Z. Cobongela

The global increase in production of plastic and accumulation in the environment is becoming a major concern especially to the aquatic life. This is due to the natural resistance of plastic to both physical and chemical degradation. Lack of biodegradability of plastic polymers is linked to, amongst other factors, the mobility of the polymers in the crystalline part of the polyesters as they are responsible for enzyme interaction. There are significantly few catabolic enzymes that are active in breaking down polyesters which are the constituents of plastic. The synthetic polymers widely used in petroleum-based plastics include polyethylene (PE), polypropylene (PP), polyvinylchloride (PVC), polyurethane (PUR), polystyrene (PS), polyamide (PA) and polyethylene terephthalate (PET) being the ones used mostly. Polymers with heteroatomic backbone such as PET and PUR are easier to degrade than the straight carbon-carbon backbone polymers such as PE, PP, PS and PVC.


2020 ◽  
Vol 4 (1) ◽  
pp. 17
Author(s):  
Kavian O. Cooke ◽  
Tahir I. Khan ◽  
Muhammad Ali Shar

Heat-treatment is a frequently used technique for modifying the physical and chemical properties of materials. In this study, the effect of heat-treatment on the mechanical properties, thermal stability and surface morphology of two types of electrodeposited coatings (pure-Ni and Ni/Al2O3) were investigated. The XRD analyses showed that the crystal structure of the as-deposited coating changes from slightly amorphous to crystalline as the heat-treatment temperature increases. The heat-treatment of both the pure-Ni and the Ni/Al2O3 coating caused an increase of the grain size within the coatings. However, the unreinforced Ni coating experienced a faster growth rate than the Ni/Al2O3 coating, which resulted in a larger average grain size. The temperature-driven changes to the microstructure of the coatings caused a reduction in the hardness and wear resistance of the coatings. The presence of nanoparticles within the Ni/Al2O3 coating can successfully extend the operational temperature range of the coating to 473 K by pinning grain boundaries.


Molecules ◽  
2020 ◽  
Vol 25 (14) ◽  
pp. 3238
Author(s):  
Raha Saremi ◽  
Nikolay Borodinov ◽  
Amine Mohamed Laradji ◽  
Suraj Sharma ◽  
Igor Luzinov ◽  
...  

Renewable nanocellulose materials received increased attention owing to their small dimensions, high specific surface area, high mechanical characteristics, biocompatibility, and compostability. Nanocellulose coatings are among many interesting applications of these materials to functionalize different by composition and structure surfaces, including plastics, polymer coatings, and textiles with broader applications from food packaging to smart textiles. Variations in porosity and thickness of nanocellulose coatings are used to adjust a load of functional molecules and particles into the coatings, their permeability, and filtration properties. Mechanical stability of nanocellulose coatings in a wet and dry state are critical characteristics for many applications. In this work, nanofibrillated and nanocrystalline cellulose coatings deposited on the surface of polymer films and textiles made of cellulose, polyester, and nylon are studied using atomic force microscopy, ellipsometry, and T-peel adhesion tests. Methods to improve coatings’ adhesion and stability using physical and chemical cross-linking with added polymers and polycarboxylic acids are analyzed in this study. The paper reports on the effect of the substrate structure and ability of nanocellulose particles to intercalate into the substrate on the coating adhesion.


2012 ◽  
Vol 549 ◽  
pp. 523-527 ◽  
Author(s):  
Xu Mei Song

With the collagen hydrolyzate by alkali extraction from chromium-containing shavings as raw material, the protein leather finishing agent is prepared in this work. The monomers of acrylic acid series and namo-TiO2 are applied in physical and chemical modification of the collagen. The structure of the protein finishing agent is characterized by IR. The optimum technological conditions are determined by the orthogonal tests. The remarkable characteristics of this method were the lower bromine number, the better chemical and mechanical stability, and the better repeatability of the product. The resistance to dry and wet rubbing fastness and water resistance of the protein finishing agent are superior to that of the conventional leather finishing agents. The protein finishing agent has also antimicrobial performance.


2017 ◽  
Author(s):  
Marcel Bliedtner ◽  
Imke K. Schäfer ◽  
Roland Zech ◽  
Hans von Suchodoletz

Abstract. Long-chain n-alkanes became increasingly used for paleoenvironmental studies during the last years as they have the great potential to reconstruct past changes in vegetation and climate. They mostly originate from leaf waxes of higher terrestrial plants, are relatively resistant against physical and chemical degradation and can thus serve as valuable biomarkers that are preserved in various sedimentary archives for at least millennial timescales. However, before any robust interpretation of the long-chain n-alkane patterns in sedimentary archives, reference samples from modern vegetation and topsoil material should be investigated at a regional scale. Apart from Central and South-Eastern Europe, such systematic regional studies on modern plant and topsoil material are still largely lacking. To test the potential of leaf wax derived n-alkane patterns for paleoenvironmental studies in the semi-humid to semi-arid southern Caucasus region, we investigated the influence of different vegetation types on the leaf wax n-alkane signal in modern plants and topsoil material (0–5 cm) from eastern Georgia. We sampled (i) sites with grassland that included steppe, cultivated grassland and meadows, and (ii) sites that are dominated by deciduous hornbeam forests. The n-alkane results show distinct and systematic differences between samples from sites with the different vegetation types: n-alkanes derived from sites with grassland are mainly dominated by C31, while n-alkanes derived from sites with deciduous trees show high abundances of C29. Thus, chain-length ratios allow to discriminate between these two different vegetation types and have a great potential when used for regional paleoenvironmental reconstructions. As degradation of organic matter can affect the leaf wax n-alkane distribution, we further present an updated end-member model that includes our results, accounts for degradation effects and enables semi-quantitative reconstruc-tions of past vegetation changes in the southern Caucasus region.


Author(s):  
Tran Van Luan, Le Minh Tien Tran

We have analyzed the fire-mechanical behaviour of sandwich composite materials used in marine applications, as a function of the combustion time. In this light, sandwich beam samples are analyzed in terms of fire resistance kinetic and of post-combustion mechanical strength. We have shown that the materials undergo a strong degradation during 100 s of fire exposure at 750 ° C and this degradation is linked to the top skin. Finally, a finite element modelling work is being developed to predict the thermal behavior of composite sandwich materials; this modelling must include all thermal, physical and chemical degradation processes in order to realistically report resistance of materials in extreme temperature environment.


Sign in / Sign up

Export Citation Format

Share Document