Durability study of ramie fiber fabric reinforced phenolic plates under humidity conditions

2016 ◽  
Vol 23 (1) ◽  
pp. 45-52 ◽  
Author(s):  
Guijun Xian ◽  
Peng Yin ◽  
Innocent Kafodya ◽  
Hui Li ◽  
Wei-lun Wang

AbstractA durability study of a ramie fiber fabric reinforced phenolic resin (RFRP) plate under 50%, 85%, and 98% relative humidity for 6 months at room temperature was performed. Water absorption and desorption, tensile and short beam shear strengths of the RFRP plates were investigated as a function of exposure time. RFRP samples show strong hydrophilic characteristics and the saturated water content varies from 0.73% to 4.5% with relative humidity ranging from 50% to 98%. After 6 months of exposure to 98% relative humidity, an abnormal extra amount of moisture was absorbed, which may have resulted from cracks in the resin matrix or from debonding between fiber and resin due to swelling of the fibers with high moisture content. It was found that the tensile modulus is more susceptible to moisture uptake, which is ascribed to the degradation of ramie fibers with the water ingress. An approximate linearity between the mechanical properties and the moisture content is observed if the abnormal extra water uptake is neglected. Both tensile and short beam shear strengths of the RFRP samples recovered remarkably when samples were fully dried at 60°C, indicating a low degree of permanent degradation occurred due to the exposure.

2016 ◽  
Vol 36 (2) ◽  
pp. 157-163 ◽  
Author(s):  
Ayyanar Athijayamani ◽  
Balasubramaniam Stalin ◽  
Susaiyappan Sidhardhan ◽  
Azeez Batcha Alavudeen

Abstract The present study describes the preparation of aligned unidirectional bagasse fiber-reinforced vinyl ester (BFRVE) composites and their mechanical properties such as tensile, flexural, shear and impact strength. Composites were prepared by a hand lay-up technique developed in our laboratory with the help of a hot press. Mechanical properties were obtained for different fiber contents by varying the number of layers. The obtained tensile property values were compared with the theoretical results. The results show that the tensile strength increased linearly up to 44 wt% and then dropped. However, the tensile modulus increased linearly from 17 wt% to 60 wt%. In the case of flexural properties, the flexural strength increased up to 53 wt% and started to decrease. However, the flexural modulus also increased linearly up to 60 wt%. The impact strength values were higher than the matrix materials for all the specimens. The short beam shear strength values were also increased up to 53 wt% and then dropped. The modified Bowyer and Bader (MBB) model followed by the Hirsch model shows a very good agreement with experimental results in both tensile strength and modulus.


2021 ◽  
Vol 22 (2) ◽  
pp. 62
Author(s):  
Umi Lailatul Jamilah ◽  
Sujito Sujito

THE IMPROVEMENT OF RAMIE FIBER PROPERTIES AS COMPOSITE MATERIALS USING ALKALIZATION TREATMENT: NaOH CONCENTRATION. Ramie fiber is a plant fiber that has good quality and potential as a constituent of composite materials. In this study, ramie fiber surface modification was conducted through alkalization with various at 0%, 4%, 5%, 6%, 7%, 8%, and 9% concentrations of NaOH using a magnetic stirrer with a speed of 200 rpm at 70οC for 5 hours. Alkaline ramie fibers are characterized using the Cheson method to determine the chemical composition of ramie fiber, FT-IR test to determine the function group of ramie fiber, morphological test to know the surface structure and diameter of ramie fiber, as well as tensile test to know the tensile strength and tensile modulus of PLA/ramie composite. Overall, the increase of NaOH concentration up to 8% percentage was able to increase the level of cellulose and lignin ramie fibers by 88.180 % and 2.444 %, as well as lower hemicellulose levels of 1.446 %. The alkalization treatment of 8% NaOH, optimally reduces the hydrophilic properties of the fiber. The increased concentration of NaOH makes the fiber surface cleaner and the diameter smaller, but the fiber structure is damaged at a concentration of NaOH more than 8%. Tensile test results showed that alkalized ramie fibers with an 8% concentration of NaOH produced PLA/ramie composites with the highest tensile strength and tensile modulus of 57.37 MPa and 248.25 MPa. Thus, the optimum ramie fiber properties are increased using alkalization with an 8% concentration of NaOH.


2012 ◽  
Vol 2 (1) ◽  
pp. 14-20
Author(s):  
Yuwana Yuwana

Experiment on catfish drying employing ‘Teko Bersayap’ solar dryer was conducted. The result of the experiment indicated that the dryer was able to increase ambient temperature up to 44% and decrease ambient relative humidity up to 103%. Fish drying process followed equations : KAu = 74,94 e-0,03t for unsplitted fish and KAb = 79,25 e-0,09t for splitted fish, where KAu = moisture content of unsplitted fish (%), KAb = moisture content of splitted fish (%), t = drying time. Drying of unsplitted fish finished in 43.995 hours while drying of split fish completed in 15.29 hours. Splitting the fish increased 2,877 times drying rate.


2020 ◽  
Vol 54 (29) ◽  
pp. 4611-4620 ◽  
Author(s):  
Akm Samsur Rahman ◽  
Chirag Shah ◽  
Nikhil Gupta

The current research is focused on developing a geopolymer binder using rice husk ash–derived silica nanoparticles. Four types of rice husks were collected directly from various rice fields of Bangladesh in order to evaluate the pozzolanic activity and compatibility of the derived rice husk ashes with precursors of sodium-based geopolymers. Silicon carbide whiskers were introduced into sodium-based geopolymers in order to evaluate the response of silicon carbide whiskers to the interfacial bonding and strength of sodium-based geopolymers along with rice husk ashes. Compression, flexural and short beam shear tests were performed to investigate the synergistic effect of rice husk ashes–derived silica and commercially available silicon carbide whiskers. Results show that rice husk ashes–derived spherical silica nanoparticles reduced nano-porosity of the geopolymers by ∼20% and doubled the compressive strength. The simultaneous additions of rice husk ashes and silicon carbide whiskers resulted in flexural strength improvement by ∼27% and ∼97%, respectively. The increase in compressive strength due to the inclusion of silica nanoparticles is related to the reduction in porosity. The increase in flexural strength due to simultaneous inclusion of silica and silicon carbide whiskers suggest that silica particles are compatible with the metakaolin-based geopolymers, which is effective in consolidation. Finally, microscopy suggest that silicon carbide whiskers are effective in increasing bridged network and crack resistance.


Author(s):  
Charles B. Delahunt ◽  
Wenbo Wang ◽  
Simon Ghionea ◽  
Andrew Miller ◽  
Austin Chan ◽  
...  

2020 ◽  
Vol 62 (10) ◽  
pp. 1033-1040
Author(s):  
Christoph Strangfeld ◽  
Sabine Kruschwitz

Abstract The moisture content of the subfloor has to be determined before installation to avoid damage to the floor covering. Only if readiness for layering is reached, can an installation without damage be expected in all cases. In general, three approaches exist to measure residual water content: determination of moisture content, determination of water release, or determination of the corresponding relative humidity. All three approaches are tested under laboratory conditions at eight screed types including two samples thicknesses in each case. Moisture content and water release are measured by sample weighing, the corresponding relative humidity is measured by embedded sensors. All three approaches are compared and correlated. The evaluations show only a weak correlation and, in several cases, contradicting results. Samples are considered ready for layering and not ready for layering at the same time, depending on the chosen approach. Due to these contradicting results, a general threshold for a risk of damage cannot be derived based on these measurements. Furthermore, the experiment demonstrates that the measurement of corresponding relative humidity is independent of the screed type or screed composition considered. This makes humidity measurement a potentially very promising approach for the installation of material moisture monitoring systems.


Sign in / Sign up

Export Citation Format

Share Document