Investigation of three-body wear of dental materials under different chewing cycles

2018 ◽  
Vol 25 (4) ◽  
pp. 781-787 ◽  
Author(s):  
Efe Cetin Yılmaz ◽  
Recep Sadeler

Abstract This paper investigates the three-body wear resistance rates of five restorative dental composite materials at different mastication cycles and compares the results with that of an amalgam material. Five specimens of each material were exposed three-body wear tests using a computer-controlled chewing simulator with steatite balls as the antagonist (1.6 Hz, 49 N load; 120,000, 240,000 and 480,000 mechanical cycles; and thermal cycling between 5 and 55°C at 5 min/cycle and 3000 cycles) immersed in a poppy seed slurry (three-body wear environment). Initially, the microhardness values of the composite materials in the Vicker’s hardness (HV) scale were determined. The mean volume loss of the worn surfaces was measured with a three-dimensional profilometer. Means and standard deviations were calculated, and statistical analysis was performed using one-way ANOVA (α=0.05). Additionally, scanning electron microscopy analysis was performed to examine the wear tracks on the surface. The interactions between the composite resin and mean volume loss were found to be significant. The three-body wear rates for the composites Durafil and Kalore composite were significantly higher than those of the other composites and the amalgam irrespective of the number of mastication cycles. Filtek Z250 and Filtek Supreme composite resins had good three-body wear resistance similar to that of the amalgam. However, this study suggests that the correlation between Vicker’s hardness and three-body wear resistance is not significant.

Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 567
Author(s):  
Anun Wongpayakyotin ◽  
Chanchira Jubsilp ◽  
Sunan Tiptipakorn ◽  
Phattarin Mora ◽  
Christopher W. Bielawski ◽  
...  

A series of substituted polybenzoxazines was synthesized and studied as binders in non-asbestos friction composite materials. The structures of the polybenzoxazines were varied in a systemic fashion by increasing the number and position of pendant alkyl (methyl) groups and was accomplished using the respective aromatic amines during the polymer synthesis step. By investigating the key thermomechanical and tribological characteristics displayed by the composite materials, the underlying structure-properties relationships were deconvoluted. Composite friction materials with higher thermomechanical and wear resistance properties were obtained from polybenzoxazines with relatively high crosslink densities. In contrast, polybenzoxazines with relatively low crosslink densities afforded composite friction materials with an improved coefficient of friction values and specific wear rates.


1976 ◽  
Vol 55 (5) ◽  
pp. 748-756 ◽  
Author(s):  
R.L. Bowen ◽  
L.E. Reed

Candidate experimental semiporous reinforcing filler particles were prepared by heat treatment of certain glass compositions, followed by crushing and etching. Optical microscopic techniques were aided by the use of certain dyes and staining procedures to manifest submicroscopic interconnected porosity in the surface of the particles. The goal of this endeavor was to develop semiporous glass reinforcing fillers for the improvement of dental composite materials.


2019 ◽  
Vol 6 (1) ◽  
pp. 955-961
Author(s):  
Ivan Chakalov ◽  
Pavlina Koleva ◽  
Ivan Gerzhikov ◽  
Nickolay Apostolov

Author(s):  
G.A. Pilyushina ◽  
◽  
P.G. Pyrikov ◽  
E.A. Pamfilov ◽  
A.Ya. Danilyuk ◽  
...  

The use of modified wood in different friction pairs of timber machines and processing equipment is largely due to its high wear resistance, low coefficient of friction and good dissipative characteristics. The positive properties of composite materials are achieved by using technologies of volumetric modification and implantation of antifriction and heatconducting elements, as well as by forming a composite of crushed wood with the addition of modifying additives and three-dimensional reinforcement. The expansion of the scope of using composite materials in the designs of units with sliding friction pairs necessitates carrying out research on their performance and formation conditions for high level tribotechnical parameters: wear resistance, antifriction, heat resistance, etc. Lack of information on the effect from the factors providing the functional characteristics of wood-based materials including thermal conductivity and vibration absorption significantly complicates the problem analysis in design and technology when developing and producing bearing joints. Therefore, the purpose of this work was studying the conditions of contact interaction of plain bearings made of wood-metal composite materials, allowing for rheological effects, and developing the ways of control their tribotechnical parameters by changing the structure, composition and phase filler. Models of bearings of different types, which allow creating a regulated stress-strain state in sleeves and liners, were developed for these purposes. Research of the bearings performance made it possible to find vibration-damping properties when using suspended crushed fractions in the composite. Increased antifriction properties are achieved in the process of wood modification with electrolytic copper, while the manufacturability of a bearing sleeve is achieved when the support is formed directly at the installation site. Unlike most of the used antifriction materials, the bushings wood maintains the stability of structure in conditions of volumetric compression at negative and positive temperatures, and the wear processes occurring on the contact surfaces of wood-metal bearings are followed by the compaction of the sleeve material. The subsequent destruction is predominantly of fatigue nature, initiated by the dynamics of vibrations and disturbances of the system; therefore, an important part of further research is the assessment of the relaxation ability of wood-metal composites under shock-vibration loading with optimization of their composition according to this criterion.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2537
Author(s):  
Veaceslav Șaramet ◽  
Marina Meleșcanu-Imre ◽  
Ana Maria Cristina Țâncu ◽  
Crenguța Cristina Albu ◽  
Alexandra Ripszky-Totan ◽  
...  

Dentin and enamel loss related to trauma or especially caries is one of the most common pathological issues in dentistry that requires restoration of the teeth by using materials with appropriate properties. The composite resins represent dental materials with significant importance in today’s dentistry, presenting important qualities, including their mechanical behavior and excellent aesthetics. This paper focuses on the saliva interactions with these materials and on their biocompatibility, which is continuously improved in the new generations of resin-based composites. Starting from the elements involved on the molecular landscape of the dental caries process, the paper presents certain strategies for obtaining more advanced new dental composite resins, as follows: suppression of oral biofilm acids formation, promotion of remineralization process, counteraction of the proteolytic attack, and avoidance of cytotoxic effects; the relation between dental composite resins and salivary oxidative stress biomarkers is also presented in this context.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2037
Author(s):  
Izabela M. Barszczewska-Rybarek ◽  
Marta W. Chrószcz ◽  
Grzegorz Chladek

Modification of dental monomer compositions with antimicrobial agents must not cause deterioration of the structure, physicochemical, or mechanical properties of the resulting polymers. In this study, 0.5, 1, and 2 wt.% quaternary ammonium polyethylenimine nanoparticles (QA-PEI-NPs) were obtained and admixed with a Bis-GMA/TEGDMA (60:40) composition. Formulations were then photocured and tested for their degree of conversion (DC), polymerization shrinkage (S), glass transition temperature (Tg), water sorption (WS), solubility (SL), water contact angle (WCA), flexural modulus (E), flexural strength (σ), hardness (HB), and impact resistance (an). We found that the DC, S, Tg, WS, E, and HB were not negatively affected by the addition of QA-PEI-NPs. Changes in these values rarely reached statistical significance. On the other hand, the SL increased upon increasing the QA-PEI-NPs concentration, whereas σ and an decreased. These results were usually statistically significant. The WCA values increased slightly, but they remained within the range corresponding to hydrophilic surfaces. To conclude, the addition of 1 wt.% QA-PEI-NPs is suitable for applications in dental materials, as it ensures sufficient physicochemical and mechanical properties.


2014 ◽  
Vol 8 (1) ◽  
pp. 144-147 ◽  
Author(s):  
Seyed Mostafa Mousavinasab ◽  
Mehrdad Barekatain ◽  
Elahe Sadeghi ◽  
Farzaneh Nourbakhshian ◽  
Amin Davoudi

Introduction:Hardness is one of the basic properties of dental materials, specially composite resins which is relevant to their polymerization. The aim of this study was to evaluate the effect of light curing distance and the color of clear Mylar strips on surface hardness of Silorane-based (SCR) and Methacrylate-based composite resins (MCR).Materials and methods:40 samples of MCRs (Filtek Z250) and SCRs (Filtek P90) were prepared in size of 5 mm×2 mm (80 samples in total). The samples divided into 8 groups (10 samples in each one) based on the color of clear Mylar strips (white or blue) and distance from light curing source (0 mm or 2 mm). All the samples cured for 40 second and stored in incubator for 24 hours in 37°C temperature. Surface hardness test was done by Vickers test machine and the collected data were analyzed by one-way ANOVA and paired T-test by using SPSS software version 13 at significant level of 0.05.Results:MCRs cured with blue Mylar strips from 0 mm distance had the highest (114.5 kg/mm2) and SCRs cured with white Mylar strips from 2 mm distance had the lowest (42.2 kg/mm2) mean of surface hardness. Also, the results of comparison among SCRs and MCRs showed significant differences among all groups (all P values <0.01).Conclusion:The hardness decreased as the distance increased and the blue Mylar strips provided higher hardness than clear ones. Also, Filtek Z250 showed higher hardness compared to Filtek P90.


Author(s):  
P. Malara ◽  
W. Świderski

Purpose: This is a review paper that gives an insight into the most popular group ofaesthetic dental materials - dental composite materials. This article describes the historicalbackground, the main features of this group of materials, the cathegorization of the materialsin relation to clinical applications and the polymerization proces.Design/methodology/approach: This review is based on the contemporary scientificliterature most relevant to the topic. The literature search has been made in Elsevier -Science Direct.Findings: Light-curing dental composites exhibit some resemblance to the constructionof the hard tissues of the tooth. They also consist of two basic components. These are:an organic matrix and an inorganic filler. The third component, which is regularly added, isso-called binding agent. According to the composition of the materials they make a goodchoice for aesthetic restoration in natural dentition.Practical implications: In the clinical observations there are many complications resultingfrom inadequate polymerization of composite materials. This may be the result of poorquality of curing lights of a very low intensity, too long distance between the tip of the lampand the surface of the material or improper exposure timeOriginality/value: Dental composite materials are the only group of dental materialsin which these features are combined together, ensuring naturally looking final effect ofthe restoration. Easy handling of the dental composite materials together with effectivepolymerization process with portable light units make these materials a good choice forclinical use.


2013 ◽  
Vol 38 (2) ◽  
pp. 226-233 ◽  
Author(s):  
WW Barkmeier ◽  
RL Erickson ◽  
MA Latta ◽  
TM Wilwerding

SUMMARY A laboratory study was conducted to examine the wear of resin composite materials using a generalized wear simulation model. Ten specimens each of five resin composites (Esthet•X [EX], Filtek Supreme Plus [SP], Filtek Z250 [Z2], Tetric EvoCeram [EC], and Z100 Restorative [Z1]) were subjected to wear challenges of 100,000, 400,000, 800,000, and 1,200,000 cycles. The materials were placed in cylinder-shaped stainless-steel fixtures, and wear was generated using a flat stainless-steel antagonist in a slurry of polymethylmethacrylate beads. Wear (mean facet depth [μm] and volume loss [mm3]) was determined using a noncontact profilometer (Proscan 2000) with Proscan and ProForm software. Statistical analysis of the laboratory data using analysis of variance and Tukey's post hoc test showed a significant difference (p&lt;0.05) for mean wear facet depth and volume loss for both the number of cycles and resin composite material. Linear regression analysis was used to develop predictive wear rates and volume loss rates. Linear wear was demonstrated with correlation coefficients (R2) ranging from 0.914 to 0.995. Mean wear values (mean facet depth [μm]) and standard deviations (SD) for 1200K cycles were as follows: Z1 13.9 (2.0), Z2 26.7 (2.7), SP 30.1 (4.1), EC 31.8 (2.3), and EX 67.5 (8.2). Volume loss (mm3) and SDs for 1200K cycles were as follows: Z1 0.248 (0.036), Z2 0.477 (0.044), SP 0.541 (0.072), EC 0.584 (0.037), and EX 1.162 (0.139). The wear rate (μm) and volume loss rate (mm3) per 100,000 cycles for the five resin composites were as follows: wear rate Z1 0.58, EC 1.27, Z2 1.49, SP 1.62, and EX 4.35, and volume loss rate Z1 0.009, EC 0.024, Z2 0.028, SP 0.029, and EX 0.075. The generalized wear model appears to be an excellent method for measuring relative wear of resin composite materials.


Sign in / Sign up

Export Citation Format

Share Document