scholarly journals Experimental studies on the dynamic viscoelastic properties of basalt fiber-reinforced asphalt mixtures

2021 ◽  
Vol 28 (1) ◽  
pp. 489-498
Author(s):  
Yongjun Zhang ◽  
Wenbo Luo ◽  
Xiu Liu

Abstract To study the influence of basalt fibers on the viscoelastic mechanical properties of asphalt concrete (AC) mixtures, unconfined compressive dynamic modulus tests were performed on styrene–butadiene–styrene (SBS)-modified AC mixtures reinforced with various contents of basalt fibers ranging from 0.2 to 0.5% by weight at five temperatures and six load frequencies, and the dynamic moduli and phase angles of the mixtures were measured. Compared with the test results of the control mixture (with no basalt fibers), the data show that the high-temperature dynamic modulus of the mixtures initially increases and subsequently decreases with increasing fiber content and reaches its maximum value when the basalt fiber content is 0.3%, while the low-temperature dynamic modulus decreases monotonically with increasing fiber content. Furthermore, the phase angle of the mixtures initially decreases and later increases with increasing fiber content and reaches its minimum value when the basalt fiber content is 0.3%. These behaviors indicate that the addition of basalt fiber improves the high-temperature rutting resistance and low-temperature cracking resistance of the SBS-modified AC mixtures. In addition, the results of the wheel rut test exhibit a good correlation with the results of the dynamic modulus test, revealing the reliability of the dynamic modulus test for evaluating the high-temperature rutting resistance of basalt-fiber-reinforced AC mixtures.

2017 ◽  
Vol 52 (14) ◽  
pp. 1907-1914 ◽  
Author(s):  
Yang Zhiming ◽  
Liu Jinxu ◽  
Feng Xinya ◽  
Li Shukui ◽  
Xu Yuxin ◽  
...  

Basalt fiber reinforced aluminum matrix composites with different fiber contents (i.e. 0 wt%, 10 wt%, 30 wt% and 50 wt%) were prepared by hot-press sintering. Microstructure analysis indicates that basalt fibers are uniformly distributed in 10% basalt fiber reinforced aluminum matrix composite. The interfacial bonding between basalt fibers and aluminum matrix is good, and there is no interface reaction between basalt fiber and aluminum matrix. Quasi-static tensile, quasi-static compression and dynamic compression properties of basalt fiber reinforced aluminum composites were studied, and the influences of basalt fiber content on mechanical properties were discussed. Meanwhile, the failure mechanisms of basalt fiber reinforced aluminum matrix composites with different fiber content were analyzed.


2014 ◽  
Vol 599 ◽  
pp. 282-286 ◽  
Author(s):  
Chun Gang Zhang ◽  
Yan Jun Xie ◽  
Lin Chun Meng ◽  
Qin Yong Li

This paper investigated into the application of fiber-enhanced asphalt mixture in surface layer of the large longitudinal slope pavement of Xi-Sang Highway. Asphalt mixture with and without polyester fiber were used. Focus is on resistance of deformation at high temperature and flexibility at low temperature. Fiber-enhanced asphalt mixture with dynamic stability above 7000 passes/mm indicated excellent rutting resistance. The high temperature dynamic modulus of fiber-enhanced asphalt mixture was much higher than conventional SBS modified asphalt mixture. Three-point blending test result indicated that the maximum flexural strain of fiber-enhance asphalt mixture reached 4180μm/m. It was concluded that fiber-enhanced asphalt mixture was suit to be used in surface layer of the large longitudinal slope pavement of Xi-Sang Highway.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Xin Yan ◽  
Ronghua Ying ◽  
Jian Jin ◽  
Yuntai Zhang

The aim of the present study was to explore the effect of basalt fibers on the cracking resistance of microbond asphalt macadam and reduce the occurrence of cracks in asphalt pavements with semirigid base. To this end, compressive resilient modulus tests, rutting tests, and semicircular bending tests were conducted on microbond asphalt macadam with different fiber contents, and the change trends of the compressive resilient modulus, dynamic stability, and flexibility index (FI) with fiber content were revealed. According to the results of this study, the addition of basalt fibers affected the compressive resilient modulus, dynamic stability, and FI of microbond asphalt macadam significantly. With the increase of fiber content, the compressive resilient modulus, dynamic stability, and FI presented a uniform trend of increasing first and decreasing afterwards. When the fiber content was 0.4%, various indices reached their maximum values, suggesting that the cracking resistance of the basalt fiber-reinforced microbond asphalt macadam was optimal under this content. This study is of great significance for the application and promotion of basalt fiber-reinforced microbond asphalt macadam.


2021 ◽  
Vol 5 (4) ◽  
pp. 100
Author(s):  
Anjum Saleem ◽  
Luisa Medina ◽  
Mikael Skrifvars

New technologies in the automotive industry require lightweight, environment-friendly, and mechanically strong materials. Bast fibers such as kenaf, flax, and hemp reinforced polymers are frequently used composites in semi-structural applications in industry. However, the low mechanical properties of bast fibers limit the applications of these composites in structural applications. The work presented here aims to enhance the mechanical property profile of bast fiber reinforced acrylic-based polyester resin composites by hybridization with basalt fibers. The hybridization was studied in three resin forms, solution, dispersion, and a mixture of solution and dispersion resin forms. The composites were prepared by established processing methods such as carding, resin impregnation, and compression molding. The composites were characterized for their mechanical (tensile, flexural, and Charpy impact strength), thermal, and morphological properties. The mechanical performance of hybrid bast/basalt fiber composites was significantly improved compared to their respective bast fiber composites. For hybrid composites, the specific flexural modulus and strength were on an average about 21 and 19% higher, specific tensile modulus and strength about 31 and 16% higher, respectively, and the specific impact energy was 13% higher than bast fiber reinforced composites. The statistical significance of the results was analyzed using one-way analysis of variance.


Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1556 ◽  
Author(s):  
Fucheng Guo ◽  
Rui Li ◽  
Shuhua Lu ◽  
Yanqiu Bi ◽  
Haiqi He

Fiber-reinforced asphalt mixture has been widely used in pavement engineering to not only prevent asphalt binder leakage but also improve engineering properties of asphalt mixture. However, the research on three key parameters, namely fiber type, fiber length, and fiber content, which significantly affect the performance of fiber-reinforced asphalt mixture, have seldom been conducted systematically. To determine these three key parameters in the support of the application of fibers in mixture scientifically, three commonly used fibers were selected, basalt fiber, polyester fiber, and lignin fiber, and the testing on fibers, fiber-reinforced asphalt binders, and fiber-reinforced asphalt mixtures was conducted afterwards. The results showed: the favorable fiber type was basalt fiber; the favorable basalt fiber length was 6mm; the engineering properties including high temperature stability, low temperature crack resistance, and water susceptibility were clearly improved by the added basalt fiber, and the optimum basalt fiber content was 0.4 wt.%. The obtained results may be valuable from a practical point of view to engineers and practitioners.


2013 ◽  
Vol 734-737 ◽  
pp. 2287-2291 ◽  
Author(s):  
De Dong Guo

Fiber asphalt concrete has been more and more widely used in highway construction. For analyzing high and low temperature performance of fiber asphalt mixture, rheological properties of fiber asphalt mortar were studied through indoor test. Impact of Rheological properties of the fiber asphalt mortar on high temperature and low temperature properties of asphalt mixture was analyzed. Results showed that the larger fiber content was, the better performance of asphalt mixture's high temperature stability, fiber asphalt mortar rut factor and rutting tests results of asphalt mixture were linear correlation, reflecting the high temperature performance of asphalt mixture; With the increase of fiber content, variation of stiffness modulus, creep rate indicators and mixture low temperature performance was consistent, and rheological properties of fiber asphalt mortar could characterize low temperature performance of asphalt mixture.


2019 ◽  
Vol 9 (10) ◽  
pp. 2031 ◽  
Author(s):  
Hanbing Liu ◽  
Shiqi Liu ◽  
Shurong Wang ◽  
Xin Gao ◽  
Yafeng Gong

Basalt fibers are widely used in the modification of concrete materials due to its excellent mechanical properties and corrosion resistance. In this study, the basalt fibers were used to modify reactive powder concrete (RPC). The effect of four mix proportion parameters on the working and mechanical properties of basalt fiber reactive powder concrete (BFRPC) was evaluated by the response surface methodology (RSM). The fluidity, flexural and compressive strength were tested and evaluated. A statistically experimental model indicated that D (the silica fume to cement ratio) was the key of interactions between factors, affecting other factors and controlling properties of BFRPC. The increase in basalt fiber content had a remarkable effect on increasing the flexural and compressive strength when D = 0.2. The addition of basalt fiber obviously improved the mechanical properties of RPC. While when D = 0.4, the decrease of fiber content and the increase of quartz sand content could increase the compressive strength.


2020 ◽  
Vol 23 (15) ◽  
pp. 3323-3334
Author(s):  
Buntheng Chhorn ◽  
WooYoung Jung

The bonding performance of basalt fiber-reinforced polymer and concrete substrate has a significant effect on the reliability of externally strengthened existing concrete structure, due to being the most vulnerable element to failure in this fiber-reinforced polymer–concrete strengthening system. Its failure can result in the failure of the whole structure. Although many previous researchers have been interested in the tensile bonding strength of carbon fiber-reinforced polymer and glass fiber-reinforced polymer–concrete interface, that of basalt fiber-reinforced polymer–concrete interface has been very limited. Thus, the objective of this study is to experimentally assess the tensile bonding strength of the basalt fiber-reinforced polymer–concrete interface. The effects of high temperature, freezing–thawing cycles, type of resin, and concrete crack widths on the tensile bonding strength are also investigated. The pull-off experiment is conducted according to ASTM D7522/D7522M-15. A total of 205 core specimens of 50 mm diameter and 10 mm depth were taken from 41 concrete beams. The experimental results illustrate that both freezing–thawing and high-temperature condition have a substantial effect on the bonding strength of the basalt fiber-reinforced polymer–concrete interface. Bonding strength was decreased within the range of about 9%–30% when the number of freezing–thawing cycles increases from 100 to 300; likewise, it was decreased up to 30% when the exposure temperature rises to 200°C. Also, the specimens which were repaired to close their cracks by epoxy resin had no significant effect on the bonding strength of basalt fiber-reinforced polymer–concrete interface, when the specimens had crack width of less than 1.5 mm.


2016 ◽  
Vol 2016 ◽  
pp. 1-5 ◽  
Author(s):  
Yury Barabanshchikov ◽  
Ilya Gutskalov

The research object of the paper is cement paste with the particulate reinforcement of basalt fiber. Regardless of fibers’ length at the same fiber cement mix workability and cement consumption equality compressive solidity of the specimens is reduced with increasing fiber content. This is due to the necessity to increase the water-cement ratio to obtain a given workability. The flexural stability of the specimens with increasing fiber content increments in the same conditions. There is an optimum value of the fibers’ dosage. That is why stability has a maximum when crooking. The basaltic fiber particulate reinforcement usage can abruptly increase the cement paste level limiting extensibility, which is extremely important in terms of crack resistance.


2011 ◽  
Vol 413 ◽  
pp. 270-276 ◽  
Author(s):  
Wen Zhong Zheng ◽  
Hai Yan Li ◽  
Ying Wang ◽  
Heng Yan Xie

87 prismatic flexural steel fiber-reinforced reactive powder concrete (RPC) specimens with the size of 40mm×40mm×160mm were tested as well as 87 dumbbell-shaped axis tensile RPC specimens after being exposed to different high temperatures. The effect of steel fiber content and heating temperature on the flexural and tensile strength of steel fiber-reinforced RPC was analyzed. With the steel fiber content increasing, the flexural and tensile strength of steel fiber-reinforced RPC after high temperature improve significantly, and they increase first and then decrease with the heating temperature elevated, and the critical temperatures are 200¡æ and 120¡æ, respectively. Equations are established to express the relationship between the flexural and tensile strength of steel fiber-reinforced RPC and the heating temperature. The theoretical curves are in good agreement with the test data.


Sign in / Sign up

Export Citation Format

Share Document