Re-Educating Jet-Engine-Researchers to Stay Relevant

Author(s):  
Benjamin Gal-Or

Abstract, jet-engine researchers, designers and operators should follow changing uses of small and large jet engines, especially those anticipated to be used by/in the next generation,In addition, some diminishing returns from isolated, non-integrating, jet-engine component studies, vs. relevant, supersonic, shock waves control inThe central roles of the jet engine as primary or backup flight controller also constitute key relevant issues, especially under post stall conditions involving induced engine-stress while participating in crash prevention or minimal path-time maneuvers to target. [are anticipated to overcome US legislation red-tape that obstructs JES-add-on-emergency-kits-use. [

1966 ◽  
Vol 17 (2) ◽  
pp. 141-160 ◽  
Author(s):  
T. H. Frost

SummaryMixing systems have many applications in gas turbines and aircraft jet propulsion, e.g. mixing zones in combustion chambers, ejectors for jet lift thrust augmentors and supersonic propulsion systems. A further application similar to that of combustion chamber mixing is that of mixing the cold and hot exhausts of a bypass jet engine. These are both characterised by mixing at constant static pressure and approximately constant total pressure as opposed to the more general case of unequal pressures in ejector systems (Fig. 1).The exhaust mixing process as used in Rolls-Royce bypass jet engines, e.g. Spey and Conway, enables the potential of the bypass principle, in terms of minimum weight and fuel consumption, to be exploited by a simple practical device.This is achieved by mixing the two streams in a common duct of fairly short dimensions with a corrugated metal interface on the inlet side. The consideration of these practical systems forms the main topic of this paper.


Author(s):  
Felix Figaschewsky ◽  
Arnold Kühhorn ◽  
Bernd Beirow ◽  
Jens Nipkau ◽  
Thomas Giersch ◽  
...  

Recent demands for a reduction of specific fuel consumption of jet engines have been opposed by increasing propulsive efficiency with higher bypass ratios and increased engine sizes. At the same time the challenge for the engine development is to design safe and efficient fan blades of high aspect ratios. Since the fan is the very first rotor stage, it experiences significant distortions in the incoming flow depending on the operating conditions. Flow distortions do not only lead to a performance and stall margin loss but also to remarkable low engine order (LEO) excitation responsible for forced vibrations of fundamental modes. Additionally, fans of jet engines typically suffer from stall flutter, which can be additionally amplified by reflections of acoustic pressure waves at the intake. Stall flutter appears before approaching the stall line on the fan’s characteristic and limits its stable operating range. Despite the fact that this “flutter bite” usually affects only a very narrow speed range, it reduces the overall margin of safe operation significantly. With increasing aspect ratios of ultra-high bypass ratio jet engines the flutter susceptibility will probably increase further and emphasizes the importance of considering aeromechanical analyses early in the design phase of future fans. This paper aims at proving that intentional mistuning is able to remove the flutter bite of modern jet engine fans without raising issues due to heavily increased forced vibrations induced by LEO excitation. Whereas intentional mistuning is an established technology in mitigating flutter, it is also known to amplify the forced response. However, recent investigations considering aeroelastic coupling revealed that under specific circumstances mistuning can also reduce the forced response due to engine order excitation. In order to allow a direct comparison and to limit costs as well as effort at the same time, the intentional mistuning is introduced in a non-destructive way by applying heavy paint to the blades. Its impact on the blade’s natural frequencies is estimated via finite element models with an additional paint layer. In parallel, this procedure is experimentally verified with painted fan blades in the laboratory. A validated SNM (subset of nominal system modes) representation of the fan is used as a computational model to characterize its mistuned vibration behavior. Its validation is done by comparing mistuned mode shape envelopes and frequencies of an experimental modal analysis at rest with those obtained by the updated computational model. In order to find a mistuning pattern minimizing the forced response of mode 1 and 2 at the same time and satisfying stability and imbalance constraints, a multi-objective optimization has been carried out. Finally, the beneficial properties of the optimized mistuning pattern are verified in a rig test of the painted rotor.


Author(s):  
John Hartranft ◽  
Bruce Thompson ◽  
Dan Groghan

Following the successful development of aircraft jet engines during World War II (WWII), the United States Navy began exploring the advantages of gas turbine engines for ship and boat propulsion. Early development soon focused on aircraft derivative (aero derivative) gas turbines for use in the United States Navy (USN) Fleet rather than engines developed specifically for marine and industrial applications due to poor results from a few of the early marine and industrial developments. Some of the new commercial jet engine powered aircraft that had emerged at the time were the Boeing 707 and the Douglas DC-8. It was from these early aircraft engine successes (both commercial and military) that engine cores such as the JT4-FT4 and others became available for USN ship and boat programs. The task of adapting the jet engine to the marine environment turned out to be a substantial task because USN ships were operated in a completely different environment than that of aircraft which caused different forms of turbine corrosion than that seen in aircraft jet engines. Furthermore, shipboard engines were expected to perform tens of thousands of hours before overhaul compared with a few thousand hours mean time between overhaul usually experienced in aircraft applications. To address the concerns of shipboard applications, standards were created for marine gas turbine shipboard qualification and installation. One of those standards was the development of a USN Standard Day for gas turbines. This paper addresses the topic of a Navy Standard Day as it relates to the introduction of marine gas turbines into the United States Navy Fleet and why it differs from other rating approaches. Lastly, this paper will address examples of issues encountered with early requirements and whether current requirements for the Navy Standard Day should be changed. Concerning other rating approaches, the paper will also address the issue of using an International Organization for Standardization, that is, an International Standard Day. It is important to address an ISO STD DAY because many original equipment manufacturers and commercial operators prefer to rate their aero derivative gas turbines based on an ISO STD DAY with no losses. The argument is that the ISO approach fully utilizes the power capability of the engine. This paper will discuss the advantages and disadvantages of the ISO STD DAY approach and how the USN STD DAY approach has benefitted the USN. For the future, with the advance of engine controllers and electronics, utilizing some of the features of an ISO STD DAY approach may be possible while maintaining the advantages of the USN STD DAY.


Author(s):  
R. Lunderstädt ◽  
K. Fiedler

In the paper to be presented diagnostic procedures on the basis of a gas path analysis are applied on a two-shaft jet engine. Starting from the mathematical model of the engine a filter-algorithm is used which delivers from actual measurement data the state of the engine for different working conditions. The procedure is proven for some examples and discussed in regard of its practical significance.


Fluids ◽  
2021 ◽  
Vol 6 (9) ◽  
pp. 315
Author(s):  
Pavel Bulat ◽  
Konstantin Volkov ◽  
Igor Volobuev

In this paper, we study the intersection (interaction) between several steady shocks traveling in the same direction. The interaction between overtaking shocks may be regular or irregular. In the case of regular reflection, the intersection of overtaking shocks leads to the formation of a resulting shock, contact discontinuity, and some reflected discontinuities. The type of discontinuity depends on the parameters of incoming shocks. At the irregular reflection, a Mach shock forms between incoming overtaking shocks. Reflected discontinuities come from the points of intersection of the Mach stem with the incoming shocks. We also consider the possible types of shockwave configurations that form both at regular and irregular interactions of several overtaking shocks. The regions of existence of overtaking shock waves with different types of reflected shock and the intensity of reflected shocks are defined. The results obtained in the study can potentially be useful for designing supersonic intakes and advanced jet engines.


2014 ◽  
Vol 782 ◽  
pp. 578-583 ◽  
Author(s):  
Juraj Belan

The aerospace industry is one of the biggest consumers of advanced materials because of its unique combination of mechanical and physical properties and chemical stability. Highly alloyed stainless steel, titanium alloys and nickel based superalloys are mostly used for aerospace applications. The aim of the work is to evaluate protective Al Si coating applied by diffusion annealing on substrate, Ni base superalloy ZS6K. This superalloy is used for turbine blade production in aero jet engine DV 2. Using of protective alitize coating provides an increasing of heat resistance of superalloy surface and increases working temperature up to 800°C. However, overcrossing of working temperature range (for ZS6K turbine blades it is from 705°C to 750°C) sometimes happen and that is the reason for detailed study of protective coating degradation. The alitize coating were evaluated in starting stage and after various time of regular loading in real aero jet engines DV 2. Coating and its degradation was evaluated with help of quantitative metallography methods (metallography software NIS Elements) and colour contrast as well.


2015 ◽  
Vol 36 (1) ◽  
pp. 79-90 ◽  
Author(s):  
Bartosz Gawron ◽  
Tomasz Białecki

Abstract This article presents laboratory test rig with a miniature turbojet engine (MiniJETRig – Miniature Jet Engine Test Rig), that was built in the Air Force Institute of Technology. The test rig has been developed for research and development works aimed at modelling and investigating processes and phenomena occurring in full scale jet engines. In the article construction of a test rig is described, with a brief discussion on the functionality of each of its main components. Additionally examples of measurement results obtained during the realization of the initial tests have been included, presenting the capabilities of the test rig.


2013 ◽  
Vol 135 (04) ◽  
pp. 51-54 ◽  
Author(s):  
Lee S. Langston

This paper presents a review of gas turbines and Honeywell, a company based in Phoenix, history. The article through the review and historical analysis intends to provide perspective on the status of geared fan engines. The addition of a fan to a jet engine, first proposed by Frank Whittle, one of the inventors of the jet engine, increases thrust and reduces fuel consumption. Pratt & Whitney and Rolls Royce were the first to develop a dual spool engine for more efficient operation over a range of flight conditions. Work started on the geared fan TFE731 at the Garrett AiResearch Phoenix Division in 1968. The TFE731 gearbox resulted in a gear reduction of 1.8:1, to power the fan for a 2.5 bypass ratio, which was very high for the 1960s. Honeywell also has another geared turbofan engine, the ALF502. It was developed by AVCO Lycoming in Stratford, Connecticut, and has a 6000–7000 lbt thrust range. Honeywell’s successful 45-year record of producing geared fan small gas turbines gives promise of a bright future for geared fans on large commercial jet engines, providing lower fuel consumption and less noise.


2019 ◽  
Vol 91 (4) ◽  
pp. 708-716 ◽  
Author(s):  
Jozef Čerňan ◽  
Karol Semrád ◽  
Katarína Draganová ◽  
Miroslava Cúttová

Purpose The purpose of this study is to improve life prediction of certain components. Fatigue of the high-stressed structural elements is an essential parameter that affects the lifetime of such components. In particular, aviation engines are devices whose failure due to fatigue failure of one of the important components can lead to fatal consequences. Design/methodology/approach In this study, two analyses in the turbine disk of the jet engine during the simulated operating load were performed: The first one was the analysis of the heat-induced stresses using the finite element method. The goal of the second analysis was to determine the residual fatigue strength of a loaded disk by the software tool using the Palmgren - Miner Linear Damage Theory. Findings The results showed a high degree of similarity with the real tests performed on the aircraft engine and revealed the weak points in the design of the jet engine. Research limitations/implications It should be mentioned that without appropriate experiments, results of this analysis could not be verified. Practical implications These results are helpful in the re-designing of the jet engines to increase their technical feasibility. Originality/value Such analysis has been realized in the DV-2 jet engine research and development program for the first time in the history of jet engine manufacturing process in Slovakia and countries of Eastern Europe region.


Sign in / Sign up

Export Citation Format

Share Document