The Room Temperature Dielectric Spectrum of 2,2-Dimethyl-1 -butanol

1993 ◽  
Vol 48 (12) ◽  
pp. 1231-1233 ◽  
Author(s):  
R. Edelmann ◽  
A. Würflinger ◽  
S. v. Hornhardt ◽  
M. Stockhausen

Abstract The dielectric spectrum of the title substance ('neohexanol') in its pure liquid state is reported for 293 K up to 71 GHz and, for a restricted frequency range, also for lower temperatures (down to 253 K). The room temperature spectrum resembles that of alicyclic alcohols, in particular cyclopentanol, with respect to spectral shape, main relaxation time and the relation of the latter to viscosity, which similarity may be connected with the fact that these alcohols are able to form 'plastic crystals'.

Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1692
Author(s):  
Emmanuel K. Ampadu ◽  
Jungdong Kim ◽  
Eunsoon Oh

We fabricated a lateral photovoltaic device for use as infrared to terahertz (THz) detectors by chemically depositing PbS films on titanium substrates. We discussed the material properties of PbS films grown on glass with varying deposition conditions. PbS was deposited on Ti substrates and by taking advantage of the Ti/PbS Schottky junction, we discussed the photocurrent transients as well as the room temperature spectrum response measured by Fourier transform infrared (FTIR) spectrometer. Our photovoltaic PbS device operates at room temperature for wavelength ranges up to 50 µm, which is in the terahertz region, making the device highly applicable in many fields.


1987 ◽  
Vol 42 (5) ◽  
pp. 477-484 ◽  
Author(s):  
Masato Kakihana ◽  
Tadashi Nagumo

The infrared spectra of CH3CH2COONa and its 13C-labeled modifications (1-13C, 2-13C, and 3-13C) suspended in KBr disks were measured in the region 4000 -200 cm-1 at room temperature and liquid nitrogen temperature. Overlapping complex band contours appeared in some regions of the room temperature spectrum, most notably in the region 1500 -1350 cm-1, where 5 fundamentals having contributions from the methyl deformation, methylene bending, and carboxylate stretching modes should occur. In contrast to this, excellent resolution was reached at the low temperature, from which all 22 fundamentals expected in the whole spectral region investigated were detected. A complete assignment of the fundamentals is proposed mainly on the basis of the characteristic isotopic shifts of the three 13C substituted sodium propionate species. A fair number of the fundamentals were found to feature coupled modes having contributions from several group vibrations.


2009 ◽  
Vol 62-64 ◽  
pp. 445-450
Author(s):  
O.D. Osahon ◽  
O.D. Nworgu

This paper examines the relative permittivity of irradiated and non-irradiated crude oil samples in the frequency range 0.1 – 100.0MHz and room temperature regulated at 25 ± 1oC. Samples of crude oil of mean specific gravity 0.780 ± 0.015 were irradiated for periods of two, four, six, eight and ten months respectively using a gamma radiation source (Cobalt 60) at a dose rate of 0.65mSv per hour. Dielectric measurements were made by using a Boonton RX meter type 250A admittance bridge manufactured by central research Laboratories, Inc, Red, Wing, Minnesota. Analysis of the resulting dielectric data revealed that both the irradiated and non-irradiated samples exhibited dielectric dispersion over the frequency range investigated. However, the relative permittivity values of the irradiated samples were found to be higher than those of the non-irradiated sample. This difference is understandable as it can be attributed to the ionization of atoms and weakening of molecular bonds in the irradiated samples. The increase in relative permittivity for the irradiated samples was observed to be time dependent as the longer the time of irradiation of sample the higher the value of its relative permittivity. Also, in this study, it was observed that the non-irradiated crude oil sample has longer relaxation time than the irradiated ones. The relaxation time decreases gradually with increasing irradiation time. This has physical significance on the basis of the molecular theory of matter and the fact that relaxation time is inversely proportional to relaxation frequency. These results are comparable with the work of other researchers for which similar trends have been observed.


1977 ◽  
Vol 32 (7-8) ◽  
pp. 605-610 ◽  
Author(s):  
Gerhard Vierke ◽  
Peter Struckmeier

Abstract Incubation of class II chloroplasts of spinach with copper in the light at pH = 8 in concentrations that inhibit oxygen evolution results in the formation of a copper (II) protein complex with the photosynthetic membrane. The EPR spectra indicate that the four nearest ligands to Cu(II) consist of three oxygen atoms and one nitrogen atom. The copper (II) protein appears to be pre­ dominantly associated with photosystem II. The formation of this protein as measured by the EPR signal amplitude of its room temperature spectrum correlates with the inhibition of oxygen evolution and of electron transport within photosystem I. This result indicates that the inhibition of photosynthetic electron transport by copper may be due to the formation of a copper (II) chelate with a membrane protein.


Photonics ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 76
Author(s):  
Mikhail K. Khodzitsky ◽  
Petr S. Demchenko ◽  
Dmitry V. Zykov ◽  
Anton D. Zaitsev ◽  
Elena S. Makarova ◽  
...  

The terahertz frequency range is promising for solving various practically important problems. However, for the terahertz technology development, there is still a problem with the lack of affordable and effective terahertz devices. One of the main tasks is to search for new materials with high sensitivity to terahertz radiation at room temperature. Bi1−xSbx thin films with various Sb concentrations seem to be suitable for such conditions. In this paper, the terahertz radiation influence onto the properties of thermoelectric Bi1−xSbx 200 nm films was investigated for the first time. The films were obtained by means of thermal evaporation in vacuum. They were affected by terahertz radiation at the frequency of 0.14 terahertz (THz) in the presence of thermal gradient, electric field or without these influences. The temporal dependencies of photoconductivity, temperature difference and voltage drop were measured. The obtained data demonstrate the possibility for practical use of Bi1−xSbx thin films for THz radiation detection. The results of our work promote the usage of these thermoelectric materials, as well as THz radiation detectors based on them, in various areas of modern THz photonics.


Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 2873
Author(s):  
Ana Barrera ◽  
Corinne Binet ◽  
Frédéric Dubois ◽  
Pierre-Alexandre Hébert ◽  
Philippe Supiot ◽  
...  

In the present work, the dielectric properties of recycled liquid crystals (LCs) (non-purified, purified, and doped with diamond nanoparticles at 0.05, 0.1, and 0.2 wt%) were investigated. The studied LC mixtures were obtained from industrial recycling of end-of-life LC displays presenting mainly nematic phases. Dielectric measurements were carried out at room temperature on a frequency range from 0.1 to 106 Hz using an impedance analyzer. The amplitude of the oscillating voltage was fixed at 1 V using cells with homogeneous and homeotropic alignments. Results show that the dielectric anisotropy of all purified samples presents positive values and decreases after the addition of diamond nanoparticles to the LC mixtures. DC conductivity values were obtained by applying the universal law of dielectric response proposed by Jonscher. In addition, conductivity of the doped LC mixtures is lower than that of the undoped and non-purified LC.


2021 ◽  
Vol 23 ◽  
pp. 101023
Author(s):  
Araceli Aznar ◽  
Philippe Negrier ◽  
Antoni Planes ◽  
Lluís Mañosa ◽  
Enric Stern-Taulats ◽  
...  

2007 ◽  
Vol 60 (1) ◽  
pp. 6 ◽  
Author(s):  
Simon Schrödle ◽  
Gary Annat ◽  
Douglas R. MacFarlane ◽  
Maria Forsyth ◽  
Richard Buchner ◽  
...  

A study of the room-temperature ionic liquid N-methyl-N-ethylpyrrolidinium dicyanamide by dielectric relaxation spectroscopy over the frequency range 0.2 GHz ≤ ν ≤ 89 GHz has revealed that, in addition to the already known lower frequency processes, there is a broad featureless dielectric loss at higher frequencies. The latter is probably due to the translational (oscillatory) motions of the dipolar ions of the IL relative to each other, with additional contributions from their fast rotation.


1977 ◽  
Vol 32 (1) ◽  
pp. 57-60 ◽  
Author(s):  
H. E. Gunilla Knape ◽  
Lena M. Torell

Abstract Brillouin spectra of molten CSNO3 were investigated for scattering angles between 40 and 140° and in a temperature interval of 420-520 °C. An Ar+ singlemode laser was used for excitation and the total instrumental width was ~265 MHz. The measured frequency shifts and linewidths of the Brillouin components were used to determine velocities and attenuations of thermal sound waves in the frequency range 2.3-7.0 GHz. A dispersion of 4-5% was found between the present hyper­ sonic velocities and reported ultrasonic velocities. A considerable decrease in attenuation with frequency was observed in the investigated frequency range, with the value at high frequency ap­ proaching the classical attenuation. The results are in good agreement with Mountain's theory of a single relaxation time. The relaxation time of the bulk viscosity coefficient was calculated to 1.2×10-10S.


2020 ◽  
Vol 62 (3) ◽  
pp. 386
Author(s):  
Н.И. Сорокин ◽  
Ю.В. Писаревский ◽  
В.В. Гребенев ◽  
В.А. Ломонов

The impedance measurements of Li2B4O7 single crystal with Ag electrodes in the frequency range 1-3*107 Hz at room temperature have been made. The Li2B4O7 crystal (sp. gr. I41cd, Z = 8) was oriented along crystallographic axis c. Contributions from the bulk crystal and crystal / electrode boundaries in the impedance hodograph of the Ag | Li2B4O7 | Ag system were selected. The structural mechanism of lithium-ion transport in Li2B4O7 has been discussed. Based on electrophysical and structural data, the conductivity σdc = 2.3 × 10–9 S / cm, carrier mobility (vacancies VLi) μmob = 6 × 10−10 cm2 / sV and their concentration nmob = 2.4 × 1019 cm – 3 (0.14% of the amount of lithium in the crystal lattice) have been determined.


Sign in / Sign up

Export Citation Format

Share Document