scholarly journals Подвижность ионных носителей заряда в пьезоэлектрических кристаллах Li-=SUB=-2-=/SUB=-B-=SUB=-4-=/SUB=-O-=SUB=-7-=/SUB=-

2020 ◽  
Vol 62 (3) ◽  
pp. 386
Author(s):  
Н.И. Сорокин ◽  
Ю.В. Писаревский ◽  
В.В. Гребенев ◽  
В.А. Ломонов

The impedance measurements of Li2B4O7 single crystal with Ag electrodes in the frequency range 1-3*107 Hz at room temperature have been made. The Li2B4O7 crystal (sp. gr. I41cd, Z = 8) was oriented along crystallographic axis c. Contributions from the bulk crystal and crystal / electrode boundaries in the impedance hodograph of the Ag | Li2B4O7 | Ag system were selected. The structural mechanism of lithium-ion transport in Li2B4O7 has been discussed. Based on electrophysical and structural data, the conductivity σdc = 2.3 × 10–9 S / cm, carrier mobility (vacancies VLi) μmob = 6 × 10−10 cm2 / sV and their concentration nmob = 2.4 × 1019 cm – 3 (0.14% of the amount of lithium in the crystal lattice) have been determined.

2009 ◽  
Vol 23 (19) ◽  
pp. 3881-3893 ◽  
Author(s):  
N. V. PRASAD ◽  
J. SUBRAHMANYAM ◽  
P. NARAYANA MURTY ◽  
S. KARMAKAR ◽  
S. M. GUPTA

Impedance measurements were made on technological important ferroelectric ceramics, namely PZT and La0.75Bi3.25Ti3O12(BLT), in the frequency range of 100 Hz to 1 MHz, from room temperature to 500°C. Combined impedance and modulus spectroscopic analysis along with the detailed conductivity (ac and dc) data was used to understand the heterogeneity of the ceramics and the results were corroborated with temperature coefficient of dc-conductivity (figure of merit) data for the further understanding. AC-conductivity plots against frequency at different temperatures for PZT and BLT suggest the response of obeying Jonscher's and modified Jonscher's law, respectively.


2019 ◽  
Vol 7 (29) ◽  
pp. 17357-17365 ◽  
Author(s):  
Bozhao Wu ◽  
Xiangzheng Jia ◽  
Yanlei Wang ◽  
Jinxi Hu ◽  
Enlai Gao ◽  
...  

A new graphyne with high stability, excellent flexibility and carrier mobility is theoretically predicted as a promising anode material for lithium-ion batteries with high capacity.


2021 ◽  
Vol 22 (14) ◽  
pp. 7704
Author(s):  
Sayi’Mone Tati ◽  
Laleh Alisaraie

Dynein is a ~1.2 MDa cytoskeletal motor protein that carries organelles via retrograde transport in eukaryotic cells. The motor protein belongs to the ATPase family of proteins associated with diverse cellular activities and plays a critical role in transporting cargoes to the minus end of the microtubules. The motor domain of dynein possesses a hexameric head, where ATP hydrolysis occurs. The presented work analyzes the structure–activity relationship (SAR) of dynapyrazole A and B, as well as ciliobrevin A and D, in their various protonated states and their 46 analogues for their binding in the AAA1 subunit, the leading ATP hydrolytic site of the motor domain. This study exploits in silico methods to look at the analogues’ effects on the functionally essential subsites of the motor domain of dynein 1, since no similar experimental structural data are available. Ciliobrevin and its analogues bind to the ATP motifs of the AAA1, namely, the walker-A (W-A) or P-loop, the walker-B (W-B), and the sensor I and II. Ciliobrevin A shows a better binding affinity than its D analogue. Although the double bond in ciliobrevin A and D was expected to decrease the ligand potency, they show a better affinity to the AAA1 binding site than dynapyrazole A and B, lacking the bond. In addition, protonation of the nitrogen atom in ciliobrevin A and D, as well as dynapyrazole A and B, at the N9 site of ciliobrevin and the N7 of the latter increased their binding affinity. Exploring ciliobrevin A geometrical configuration suggests the E isomer has a superior binding profile over the Z due to binding at the critical ATP motifs. Utilizing the refined structure of the motor domain obtained through protein conformational search in this study exhibits that Arg1852 of the yeast cytoplasmic dynein could involve in the “glutamate switch” mechanism in cytoplasmic dynein 1 in lieu of the conserved Asn in AAA+ protein family.


Photonics ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 76
Author(s):  
Mikhail K. Khodzitsky ◽  
Petr S. Demchenko ◽  
Dmitry V. Zykov ◽  
Anton D. Zaitsev ◽  
Elena S. Makarova ◽  
...  

The terahertz frequency range is promising for solving various practically important problems. However, for the terahertz technology development, there is still a problem with the lack of affordable and effective terahertz devices. One of the main tasks is to search for new materials with high sensitivity to terahertz radiation at room temperature. Bi1−xSbx thin films with various Sb concentrations seem to be suitable for such conditions. In this paper, the terahertz radiation influence onto the properties of thermoelectric Bi1−xSbx 200 nm films was investigated for the first time. The films were obtained by means of thermal evaporation in vacuum. They were affected by terahertz radiation at the frequency of 0.14 terahertz (THz) in the presence of thermal gradient, electric field or without these influences. The temporal dependencies of photoconductivity, temperature difference and voltage drop were measured. The obtained data demonstrate the possibility for practical use of Bi1−xSbx thin films for THz radiation detection. The results of our work promote the usage of these thermoelectric materials, as well as THz radiation detectors based on them, in various areas of modern THz photonics.


Metals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1091
Author(s):  
Eva Gerold ◽  
Stefan Luidold ◽  
Helmut Antrekowitsch

The consumption of lithium has increased dramatically in recent years. This can be primarily attributed to its use in lithium-ion batteries for the operation of hybrid and electric vehicles. Due to its specific properties, lithium will also continue to be an indispensable key component for rechargeable batteries in the next decades. An average lithium-ion battery contains 5–7% of lithium. These values indicate that used rechargeable batteries are a high-quality raw material for lithium recovery. Currently, the feasibility and reasonability of the hydrometallurgical recycling of lithium from spent lithium-ion batteries is still a field of research. This work is intended to compare the classic method of the precipitation of lithium from synthetic and real pregnant leaching liquors gained from spent lithium-ion batteries with sodium carbonate (state of the art) with alternative precipitation agents such as sodium phosphate and potassium phosphate. Furthermore, the correlation of the obtained product to the used type of phosphate is comprised. In addition, the influence of the process temperature (room temperature to boiling point), as well as the stoichiometric factor of the precipitant, is investigated in order to finally enable a statement about an efficient process, its parameter and the main dependencies.


Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 2873
Author(s):  
Ana Barrera ◽  
Corinne Binet ◽  
Frédéric Dubois ◽  
Pierre-Alexandre Hébert ◽  
Philippe Supiot ◽  
...  

In the present work, the dielectric properties of recycled liquid crystals (LCs) (non-purified, purified, and doped with diamond nanoparticles at 0.05, 0.1, and 0.2 wt%) were investigated. The studied LC mixtures were obtained from industrial recycling of end-of-life LC displays presenting mainly nematic phases. Dielectric measurements were carried out at room temperature on a frequency range from 0.1 to 106 Hz using an impedance analyzer. The amplitude of the oscillating voltage was fixed at 1 V using cells with homogeneous and homeotropic alignments. Results show that the dielectric anisotropy of all purified samples presents positive values and decreases after the addition of diamond nanoparticles to the LC mixtures. DC conductivity values were obtained by applying the universal law of dielectric response proposed by Jonscher. In addition, conductivity of the doped LC mixtures is lower than that of the undoped and non-purified LC.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1946 ◽  
Author(s):  
Hae-Jun Kwon ◽  
Sang-Wook Woo ◽  
Yong-Ju Lee ◽  
Je-Young Kim ◽  
Sung-Man Lee

The electrochemical performance of modified natural graphite (MNG) and artificial graphite (AG) was investigated as a function of electrode density ranging from 1.55 to 1.7 g∙cm−3. The best performance was obtained at 1.55 g∙cm−3 and 1.60 g∙cm−3 for the AG and MNG electrodes, respectively. Both AG, at a density of 1.55 g∙cm−3, and MNG, at a density of 1.60 g∙cm−3, showed quite similar performance with regard to cycling stability and coulombic efficiency during cycling at 30 and 45 °C, while the MNG electrodes at a density of 1.60 g∙cm−3 and 1.7 g∙cm−3 showed better rate performance than the AG electrodes at a density of 1.55 g∙cm−3. The superior rate capability of MNG electrodes can be explained by the following effects: first, their spherical morphology and higher electrode density led to enhanced electrical conductivity. Second, for the MNG sample, favorable electrode tortuosity was retained and thus Li+ transport in the electrode pore was not significantly affected, even at high electrode densities of 1.60 g∙cm−3 and 1.7 g∙cm−3. MNG electrodes also exhibited a similar electrochemical swelling behavior to the AG electrodes.


2021 ◽  
Author(s):  
Ruiming Lu ◽  
Alan Olvera ◽  
Trevor Bailey ◽  
Jiefei Fu ◽  
Xianli Su ◽  
...  

The integration within the same crystal lattice of two or more structurally and chemically distinct building units enables the design of complex materials featuring the coexistence of dissimilar functionalities. Here...


Sign in / Sign up

Export Citation Format

Share Document