Biomimetische Photosysteme zur sakrifiziellen Wasserreduktion / Novel Biomimetic Systems for Visible Light Induced Water Reduction

1993 ◽  
Vol 48 (3) ◽  
pp. 369-386 ◽  
Author(s):  
Stefan Boßmann ◽  
Heinz Dürr ◽  
Eduard Mayer

Novel microheterogeneous systems for the direct photoreduction of water using visible light in analogy to the photochemical reaction center of Rhodopseudomonas viridis are described in detail. These physical model systems for photosynthesis feature the recently synthesized bisheteroleptic metal complexes [Ru(bpy)2(PP)]Cl2, [Ru(bpy)2(PPB)]Cl2, [Ru(bpy)2(PPB-pCl)]Cl2 and [Ru(bpy)3]Cl2, adsorbed on a negatively charged SiO2—TiO2-colloid, the zwitterionic electron relay PVS and a long-term stable and highly efficient TiO2—Pt-“antenna” catalyst as well as TEOA as sacrificial electron donor.Evidence for the directed absorption of the sensitizers on the SiO2—TiO2-colloid is taken from UV-VIS-measurements, steady-state luminescence-spectroscopy and the quantum yields for PVS-reduction.The hydrogen production in the presence of the SiO2—TiO2-colloid is clearly enhanced and proofs the validity of the underlying concept of physical model systems for photosynthesis.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 814-814
Author(s):  
Hitoshi Takizawa ◽  
Markus G Manz

Abstract Abstract 814 Hematopoietic stem cells (HSCs) are defined by their capacity to self-renew and give rise to all mature cells of hemato-lymphoid system for the lifetime of an individual. To ensure this, HSCs are kept at homeostatic levels in adult bone marrow. Steady-state HSC cycling kinetics have been evaluated by in vivo labeling assay using 5-bromo-2-deoxyuridine (BrdU) (Cheshier et. al., PNAS 1999; Kiel et al., Nature 2007), biotin (Nygren et. al., PLoS ONE 2008) and histon 2B-green fluorescent protein (H2B-GFP) transgenic model systems (Wilson et. al., Cell 2008; Foudi et. al., Nat. Biotech. 2008). Based on the latter, it was suggested that one HSC pool turns over faster than another, dormant pool with very limited divisions during a lifetime. However, the fast cycling HSCs did not have long-term multilineage reconstitution capacity in lethally irradiated animals in contrast to dormant HSCs (Wilson et. al., Cell 2008; Foudi et.al., Nat. Biotech. 2008). From these experiments remained unclear, whether the faster cycling HSC loose long-term repopulation potential according to divisional history, or whether they represent progenitors with limited self-renewal potential, sharing a long-term HSC phenotype. Therefore, the dynamics of steady-state long-term HSC homeostasis and blood production remains to be determined. To address this directly, we set up an in vivo HSC divisional tracking assay. Here we show i.v. transfer of CFSE (carboxyfluorescein diacetate succinimidyl ester) -labeled HSCs into non-conditioned CD45.1/2 congenic F1 recipient mice that allows evaluation of steady-state HSC dynamics as CFSE distributes equally to daughter cells upon each cellular division. Sorted naïve CD4+CD62L+ T cells were used as non-dividing control cell population to determine the zero division CFSE staining level over time. Upon transfer of Lin-c-kit+Sca-1+ cells (LKS) into sublethally irradiated mice, all donor derived Lin-c-kit+ cells had divided >5 times after 3 weeks. However, transfer of LKS cells into non-irradiated mice revealed non-divided LKS cells in recipient bone marrow over 20 weeks. FACS analysis with HSC or progenitor specific marker expression showed that most of 0-2 time-divided and few of >5x divided LKS cells maintained a long-term HSC phenotype (CD150+, c-mpl+, CD34-). In order to test HSC potential, non- or >5x divided cells were sorted based on divisional history from primary recipients at different time points after transplantation, and competitively transplanted into lethally irradiated secondary recipients. At 3 weeks post primary transfer, single non-divided LKS cell was able to multi-lineage repopulate recipients, while 50 of >5x divided LKS cells showed no engraftment. Interestingly, both non- and >5x divided LKS cells at 7 or 12-14 weeks after primary transfer had long-term multilineage repopulating potential. Limiting dilution transplantation experiments demonstrated that HSC with long-term multilineage capacity (LT-HSC) were maintained at constant numbers that fit the numbers of free bone marrow niche space, with non-divided LT-HSC decreasing and >5x divided LT-HSC increasing with a constant division rate. We next tested the effects of hemato-immunological challenge on HSC cycling dynamics. Upon i.p. LPS injection into mice, previously transplanted with CFSE-labeled LKS, almost all LT-HSCs entered cell cycle within one week after challenge. These findings directly demonstrate that some LT-HSCs are quiescent for up to one fifth of the life-time of a mouse, while other LT-HSCs divide more actively, thus proving asynchronous LT-HSC division and contribution to hematopoiesis in steady-state. In addition, the results demonstrate that quiescent LT-HSCs are driven into division in response to naturally-occurring hematopoietic challenges, such as systemic bacterial infection. The CFSE-tracking model established here now allows to directly test the role of intrinsic versus environmental cues on cycling-dynamics of HSCs as well as leukemia initiating cells in steady-state and upon challenge on multiple genetic and different species background. Disclosures: No relevant conflicts of interest to declare.


Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1877
Author(s):  
Kai-Hung Yang ◽  
Gabriella Lindberg ◽  
Bram Soliman ◽  
Khoon Lim ◽  
Tim Woodfield ◽  
...  

Recent advances highlight the potential of photopolymerizable allylated gelatin (GelAGE) as a versatile hydrogel with highly tailorable properties. It is, however, unknown how different photoinitiating system affects the stability, gelation kinetics and curing depth of GelAGE. In this study, sol fraction, mass swelling ratio, mechanical properties, rheological properties, and curing depth were evaluated as a function of time with three photo-initiating systems: Irgacure 2959 (Ig2959; 320–500 nm), lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP; 320–500 nm), and ruthenium/sodium persulfate (Ru/SPS; 400–500 nm). Results demonstrated that GelAGE precursory solutions mixed with either Ig2959 or LAP remained stable over time while the Ru/SPS system enabled the onset of controllable redox polymerization without irradiation during pre-incubation. Photo-polymerization using the Ru/SPS system was significantly faster (<5 s) compared to both Ig2959 (70 s) and LAP (50 s). Plus, The Ru/SPS system was capable of polymerizing a thick construct (8.88 ± 0.94 mm), while Ig2959 (1.62 ± 0.49 mm) initiated hydrogels displayed poor penetration depth with LAP (7.38 ± 2.13 mm) in between. These results thus support the use of the visible light based Ru/SPS photo-initiator for constructs requiring rapid gelation and a good curing depth while Ig2959 or LAP can be applied for photo-polymerization of GelAGE materials requiring long-term incubation prior to application if UV is not a concern.


Catalysts ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 529
Author(s):  
Adilah Sirivallop ◽  
Salvador Escobedo ◽  
Thanita Areerob ◽  
Hugo de Lasa ◽  
Siriluk Chiarakorn

This research studies the photocatalytic conversion of methanol (25–90 µmol/L range) as a volatile organic compound (VOC) surrogate into CO2, using a N/Ag/TiO2 photocatalyst under visible light irradiation in a Photo-CREC Air unit. The N/Ag/TiO2 mesh supported photocatalyst is prepared via the solvothermal method. While the bare-TiO2 is inactive under visible light, the N/Ag/TiO2 2 wt.% loaded stainless-steel woven mesh displays 35% quantum yields, with 80% absorbed photons and 60% methanol conversion in a 110 min irradiation period. Results obtained are assigned to silver surface plasmon resonance, silver and nitrogen species synergistic impacts on band gap, and their influence on particle agglomerate size and semiconductor acidity. The determined quantum yields under visible light in a Photo-CREC Air unit, are the highest reported in the technical literature, that these authors are aware of, with this opening unique opportunity for the use of visible light for the purification of air from VOC contaminants.


2013 ◽  
Vol 11 (1) ◽  
pp. 625-633 ◽  
Author(s):  
Philippe Brunet de la Grange ◽  
Marija Vlaski ◽  
Pascale Duchez ◽  
Jean Chevaleyre ◽  
Veronique Lapostolle ◽  
...  

2021 ◽  
Author(s):  
Oliver Krueger ◽  
Frauke Feser ◽  
Christopher Kadow ◽  
Ralf Weisse

&lt;p&gt;Global atmospheric reanalyses are commonly applied for the validation of climate models, diagnostic studies, and driving higher resolution numerical models with the emphasis on assessing climate variability and long-term trends. Over recent years, longer reanalyses spanning a period of more than hundred years have become available. In this study, the variability and long-term trends of storm activity is assessed over the northeast Atlantic in modern centennial reanalysis datasets, namely ERA-20cm, ERA-20c, CERA-20c, and the 20CR-reanalysis suite with 20CRv3 being the most recent one. All reanalyses, except from ERA-20cm, assimilate surface pressure observations, whereby ERA-20C and CERA-20c additionally assimilate surface winds. For the assessment, the well-established storm index of higher annual percentiles of geostrophic wind speeds derived from pressure observations at sea level over a relatively densely monitored marine area is used.&lt;/p&gt;&lt;p&gt;The results indicate that the examined centennial reanalyses are not able to represent long-term trends of storm activity over the northeast Atlantic, particularly in the earlier years of the period examined when compared with the geostrophic wind index based on pressure observations. Moreover, the reanalyses show inconsistent long-term behaviour when compared with each other. Only in the latter half of the 20th century, the variability of reanalysed and observed storminess time series starts to agree with each other. Additionally, 20CRv3, the most recent centennial reanalysis examined, shows markedly improved results with increased uncertainty, albeit multidecadal storminess variability does not match observed values in earlier times before about 1920.&lt;/p&gt;&lt;p&gt;The behaviour shown by the centennial reanalyses are likely caused by the increasing number of assimilated observations, changes in the observational databases used, and the different underlying numerical model systems. Furthermore, the results derived from the ERA-20cm reanalysis that does not assimilate any pressure or wind observations suggests that the variability and uncertainty of storminess over the northeast Atlantic is high making it difficult to determine storm activity when numerical models are not bound by observations. The results of this study imply and reconfirm previous findings that the assessment of long-term storminess trends and variability in centennial reanalyses remains a rather delicate matter, at least for the northeast Atlantic region.&lt;/p&gt;


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-13
Author(s):  
M. V. Barbarossa ◽  
M. Polner ◽  
G. Röst

We investigate the temporal evolution of the distribution of immunities in a population, which is determined by various epidemiological, immunological, and demographical phenomena: after a disease outbreak, recovered individuals constitute a large immune population; however, their immunity is waning in the long term and they may become susceptible again. Meanwhile, their immunity can be boosted by repeated exposure to the pathogen, which is linked to the density of infected individuals present in the population. This prolongs the length of their immunity. We consider a mathematical model formulated as a coupled system of ordinary and partial differential equations that connects all these processes and systematically compare a number of boosting assumptions proposed in the literature, showing that different boosting mechanisms lead to very different stationary distributions of the immunity at the endemic steady state. In the situation of periodic disease outbreaks, the waveforms of immunity distributions are studied and visualized. Our results show that there is a possibility to infer the boosting mechanism from the population level immune dynamics.


1984 ◽  
Vol 37 (3) ◽  
pp. 475 ◽  
Author(s):  
RW Matthews

Solutions of cerium(III)/(IV) and formic acid in 0.4 M sulfuric acid have been photolysed under 254 nm and 365 nm light. Marked differences in the reaction kinetics and quantum yields are observed at the two different wavelengths. At 365 nm, the reactions leading to cerium(IV) reduction are caused almost exclusively by the SO4- radical. The ratio of rate constants, k(SO4- + CeIII)/ k(SO4- + HCOOH), is 116 � 11 and the quantum yield of sulfate radicals, ф(SO4-), is 0.023 � 0.002. At 254 nm, the reactions leading to cerium(IV) reduction are caused mainly by the OH radical, but approximately 35% of the oxidizing radicals formed in the primary photochemical reaction are SO4-. Cerium(III) species, excited at 254 nm, transfer energy to cerium(IV) and this results in an additional yield of OH and SO4- radicals. Fluorescence measurements confirmed the efficiency of the energy transfer reaction. The ratio of rate constants, k(OH+CeIII)/k(OH+HCOOH), is 2.22 � 0.18 and ф(CeIV*) and ф(CelIII*) giving oxidizing radicals are 0.116 � 0.010 and 0.0083 � 0.0008 respectively. Thus about 5 times more total oxidizing radicals are produced from excited cerium(IV) species at 254 nm than at 365 nm.


Sign in / Sign up

Export Citation Format

Share Document