3,5-Dicaffeoyl-epi-quinic acid inhibits the PMA-stimulated activation and expression of MMP-9 but not MMP-2 via downregulation of MAPK pathway

2020 ◽  
Vol 75 (3-4) ◽  
pp. 113-120 ◽  
Author(s):  
Jung Im Lee ◽  
Jung-Ha Kil ◽  
Ga Hyun Yu ◽  
Fatih Karadeniz ◽  
Jung Hwan Oh ◽  
...  

AbstractMatrix metalloproteinases (MMPs), especially MMP-2 and MMP-9, are very important gelatinases that are overexpressed during tumor metastasis. Up to date, several MMP inhibitors have been developed from natural sources as well as organic synthesis. In the present study, the MMP-2 and MMP-9 inhibitory effects of 3,5-dicaffeoyl-epi-quinic acid (DCEQA), a caffeoylquinic acid derivative isolated from Atriplex gmelinii, were investigated in phorbol 12-myristate 13-acetate (PMA)-treated human HT1080 fibrosarcoma cells. Gelatin zymography and immunoblotting showed that DCEQA significantly inhibited the PMA-induced activation and expression of MMP-9 but was not able to show any effect against MMP-2. DCEQA treatment was also shown to upregulate the protein expression of tissue inhibitor of MMP-1 along with decreased MMP-9 protein levels. Moreover, the effect of DCEQA on phosphorylation of mitogen activated protein kinases (MAPKs), analyzed by immunoblotting, indicated the DCEQA inhibited the MMP-9 by downregulation of MAPK pathway. Collectively, current results suggested that DCEQA is a potent MMP-9 inhibitor and can be utilized as lead compound for treatment of pathological complications involving enhanced MMP activity such as cancer metastasis.

Molecules ◽  
2019 ◽  
Vol 24 (3) ◽  
pp. 604
Author(s):  
Hojun Kim ◽  
Fatih Karadeniz ◽  
Chang-Suk Kong ◽  
Youngwan Seo

The current study investigated the ability of two secoiridoids, GL-3 (1) and oleonuezhenide (2), isolated from the fruits of Ligustrum japonicum to inhibit MMP-2 and -9 activity in phorbol 12-myristate 13-acetate (PMA)-induced HT-1080 human fibrosarcoma cells. Both compounds 1 and 2 were able to exert lowered gelatin digestion activity for MMP-2 and -9 tested by gelatin zymography via suppressing the release of MMPs to culture medium according to ELISA results. Treatment with compounds was also able to suppress the expression of both mRNA and protein levels of MMP-2 and -9. Action mechanism behind the MMP inhibitory effect of the compounds was suggested to be via MAPK pathway indicated by decreased levels of phosphorylated p38, ERK and JNK proteins evaluated employing immunoblotting. Compound 1 was shown to be slightly more active to inhibit MMP-2 and -9, however, compound 2 showed more regular dose-dependency during inhibition. In conclusion, this study suggested that GL-3 and oleonuezhenide were notable natural origin potent MMP inhibitors and could serve as lead compounds for development of anti-invasive MMP inhibitors against tumor metastasis.


Brain ◽  
2019 ◽  
Vol 143 (1) ◽  
pp. 131-149 ◽  
Author(s):  
Anika Bongaarts ◽  
Jackelien van Scheppingen ◽  
Anatoly Korotkov ◽  
Caroline Mijnsbergen ◽  
Jasper J Anink ◽  
...  

Abstract Tuberous sclerosis complex (TSC) is an autosomal dominantly inherited neurocutaneous disorder caused by inactivating mutations in TSC1 or TSC2, key regulators of the mechanistic target of rapamycin complex 1 (mTORC1) pathway. In the CNS, TSC is characterized by cortical tubers, subependymal nodules and subependymal giant cell astrocytomas (SEGAs). SEGAs may lead to impaired circulation of CSF resulting in hydrocephalus and raised intracranial pressure in patients with TSC. Currently, surgical resection and mTORC1 inhibitors are the recommended treatment options for patients with SEGA. In the present study, high-throughput RNA-sequencing (SEGAs n = 19, periventricular control n = 8) was used in combination with computational approaches to unravel the complexity of SEGA development. We identified 9400 mRNAs and 94 microRNAs differentially expressed in SEGAs compared to control tissue. The SEGA transcriptome profile was enriched for the mitogen-activated protein kinase (MAPK) pathway, a major regulator of cell proliferation and survival. Analysis at the protein level confirmed that extracellular signal-regulated kinase (ERK) is activated in SEGAs. Subsequently, the inhibition of ERK independently of mTORC1 blockade decreased efficiently the proliferation of primary patient-derived SEGA cultures. Furthermore, we found that LAMTOR1, LAMTOR2, LAMTOR3, LAMTOR4 and LAMTOR5 were overexpressed at both gene and protein levels in SEGA compared to control tissue. Taken together LAMTOR1–5 can form a complex, known as the ‘Ragulator’ complex, which is known to activate both mTORC1 and MAPK/ERK pathways. Overall, this study shows that the MAPK/ERK pathway could be used as a target for treatment independent of, or in combination with mTORC1 inhibitors for TSC patients. Moreover, our study provides initial evidence of a possible link between the constitutive activated mTORC1 pathway and a secondary driver pathway of tumour growth.


Planta Medica ◽  
2021 ◽  
Author(s):  
Yue Yang ◽  
Yufang Ding ◽  
Huan Gao ◽  
Xiaowen Jiang ◽  
Qingchun Zhao

Abstract1,3,5-Tri-O-caffeoyl quinic acid is a caffeoylquinic acid derivative isolated from the roots of Arctium lappa L. Our previous studies have revealed that the ethyl acetate extract of the roots of A. lappa L. and the caffeoylquinic acids contained in it possess antioxidant properties, especially 1,3,5-tri-O-caffeoyl quinic acid. The present study aimed to investigate the protective effects of 1,3,5-tri-O-caffeoyl quinic acid against hydrogen peroxide-induced oxidative stress and explore the underlying mechanism. We found that 1,3,5-tri-O-caffeoyl quinic acid prevented the decline of cell viability and excessive release of lactate dehydrogenase induced by hydrogen peroxide. In addition, Hoechst 33 342 staining and Annexin V-PI double staining showed that 1,3,5-tri-O-caffeoyl quinic acid inhibited hydrogen peroxide-induced neuronal cell apoptosis. 1,3,5-Tri-O-caffeoyl quinic acid reduced the excessive production of intracellular reactive oxygen species, decreased the malondialdehyde content, and improved the activity of superoxide dismutase. Furthermore, 1,3,5-tri-O-caffeoyl quinic acid restored the loss of mitochondrial membrane potential in SH-SY5Y cells induced by hydrogen peroxide. 1,3,5-Tri-O-caffeoyl quinic acid downregulated the overexpression of proapoptotic proteins, including Bax, cytochrome c, cleaved caspase-9, and cleaved caspase-3 as well as promoted the expression of the antiapoptotic protein Bcl-2. Moreover, the phosphorylation of mitogen-activated protein kinases induced by hydrogen peroxide was inhibited by 1,3,5-tri-O-caffeoyl quinic acid. Pretreatment with 1,3,5-tri-O-caffeoyl quinic acid also promoted the activation of phosphorylated Akt. Taken together, these findings suggest that 1,3,5-tri-O-caffeoyl quinic acid exerts protective effects against hydrogen peroxide-induced neuronal apoptosis. In addition, inhibition of the mitogen-activated protein kinase signaling pathway and the activation of Akt are implicated in the antioxidant activity of 1,3,5-tri-O-caffeoyl quinic acid, giving new insight in searching for a compound with antioxidant activity for the treatment of oxidative stress-associated neurological diseases.


2013 ◽  
Vol 304 (10) ◽  
pp. R846-R853 ◽  
Author(s):  
Zun-Yi Wang ◽  
Peiqing Wang ◽  
Dale E. Bjorling

Cannabinoids have been shown to exert analgesic and anti-inflammatory effects, and the effects of cannabinoids are mediated primarily by cannabinoid receptors 1 and 2 (CB1and CB2). Both CB1 and CB2 are present in bladders of various species, including human, monkey, and rodents, and it appears that CB2 is highly expressed in urothelial cells. We investigated whether treatment with the CB2 agonist GP1a alters severity of experimental cystitis induced by acrolein and referred mechanical hyperalgesia associated with cystitis. We also investigated whether the mitogen-activated protein kinases (MAPK), ERK1/2, p38, and JNK are involved in the functions of CB2. We found that treatment with the selective CB2 agonist GP1a (1–10 mg/kg, ip) inhibited the severity of bladder inflammation 3 h after intravesical instillation of acrolein in a dose-dependent manner, and inhibition reached significance at a dose of 10 mg/kg ( P < 0.05). Treatment with GP1a (10 mg/kg) inhibited referred mechanical hyperalgesia associated with cystitis ( P < 0.05). The inhibitory effects of the CB2 agonist were prevented by the selective CB2 antagonist AM630 (10 mg/kg, sc). We further demonstrated the inhibitory effects of CB2 appear to be at least partly mediated by reducing bladder inflammation-induced activation of ERK1/2 MAPK pathway. The results of the current study indicate that CB2 is a potential therapeutic target for treatment of bladder inflammation and pain in patients.


2020 ◽  
Vol 21 (13) ◽  
pp. 4732
Author(s):  
You Chul Chung ◽  
Chang-Gu Hyun

Melanin protects our skin from harmful ultraviolet (UV) radiation. However, when produced in excess, it can cause hyperpigmentation disorders, such as melanoma, freckles, lentigo, and blotches. In this study, we investigated the effects of pinostilbene hydrate (PH) on melanogenesis. We also examined the underlying mechanisms of PH on melanin production in B16F10 cells. Our findings indicated that PH significantly inhibits melanin content and cellular tyrosinase activity in cells without causing cytotoxicity. In addition, Western blot analysis showed that PH downregulated the protein levels of microphthalmia-associated transcription factor (MITF), tyrosinase, and other melanogenic enzymes, such as tyrosinase-related protein-1 (TRP-1) and tyrosinase-related protein-2 (TRP-2). Although PH activated the phosphorylation of extracellular signal-regulated kinase (ERK), it inhibited p38 mitogen-activated protein kinases (p38). Furthermore, the inhibition of tyrosinase activity by PH was attenuated by treatment with PD98059 (a specific ERK inhibitor). Additionally, p-AKT was upregulated by PH treatment. Finally, the inhibitory effects of PH on melanin content and tyrosinase activity were confirmed in normal human melanocytes. These results suggest PH downregulates melanogenesis via the inhibition of MITF expression, followed by the MAPKase signaling pathways. Thus, PH may be used to treat or prevent hyperpigmentation disorders and in functional cosmetic agents for skin whitening.


Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1082
Author(s):  
Amandeep Singh ◽  
Jeehoon Ham ◽  
Joseph William Po ◽  
Navin Niles ◽  
Tara Roberts ◽  
...  

Thyroid cancer is the most prevalent endocrine malignancy that comprises mostly indolent differentiated cancers (DTCs) and less frequently aggressive poorly differentiated (PDTC) or anaplastic cancers (ATCs) with high mortality. Utilisation of next-generation sequencing (NGS) and advanced sequencing data analysis can aid in understanding the multi-step progression model in the development of thyroid cancers and their metastatic potential at a molecular level, promoting a targeted approach to further research and development of targeted treatment options including immunotherapy, especially for the aggressive variants. Tumour initiation and progression in thyroid cancer occurs through constitutional activation of the mitogen-activated protein kinase (MAPK) pathway through mutations in BRAF, RAS, mutations in the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) pathway and/or receptor tyrosine kinase fusions/translocations, and other genetic aberrations acquired in a stepwise manner. This review provides a summary of the recent genetic aberrations implicated in the development and progression of thyroid cancer and implications for immunotherapy.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Huiyuan Ji ◽  
Yuxin Zhang ◽  
Chen Chen ◽  
Hui Li ◽  
Bingqiang He ◽  
...  

Abstract Background Astrocytes are the predominant glial cell type in the central nervous system (CNS) that can secrete various cytokines and chemokines mediating neuropathology in response to danger signals. D-dopachrome tautomerase (D-DT), a newly described cytokine and a close homolog of macrophage migration inhibitory factor (MIF) protein, has been revealed to share an overlapping function with MIF in some ways. However, its cellular distribution pattern and mediated astrocyte neuropathological function in the CNS remain unclear. Methods A contusion model of the rat spinal cord was established. The protein levels of D-DT and PGE2 synthesis-related proteinase were assayed by Western blot and immunohistochemistry. Primary astrocytes were stimulated by different concentrations of D-DT in the presence or absence of various inhibitors to examine relevant signal pathways. The post-injury locomotor functions were assessed using the Basso, Beattie, and Bresnahan (BBB) locomotor scale. Results D-DT was inducibly expressed within astrocytes and neurons, rather than in microglia following spinal cord contusion. D-DT was able to activate the COX2/PGE2 signal pathway of astrocytes through CD74 receptor, and the intracellular activation of mitogen-activated protein kinases (MAPKs) was involved in the regulation of D-DT action. The selective inhibitor of D-DT was efficient in attenuating D-DT-induced astrocyte production of PGE2 following spinal cord injury, which contributed to the improvement of locomotor functions. Conclusion Collectively, these data reveal a novel inflammatory activator of astrocytes following spinal cord injury, which might be beneficial for the development of anti-inflammation drug in neuropathological CNS.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Jianwei Zhang ◽  
Lei Han ◽  
Feng Chen

Abstract Background Let-7a-5p is demonstrated to be a tumor inhibitor in nasopharyngeal carcinoma. However, the role of let-7a-5p in chronic rhinosinusitis with nasal polyps (CRSwNP) has not been reported. This study is designed to determine the pattern of expression and role of let-7a-5p in CRSwNP. Methods The expression level of let-7a-5p, TNF-α, IL-1β, and IL-6 in CRSwNP tissues and cells were detected by RT-qPCR. Western blot assay was carried out to measure the protein expression of the Ras-MAPK pathway. Dual luciferase reporter assay and RNA pull-down assay were used to explore the relationship between let-7a-5p and IL-6. Results Let-7a-5p was significantly downregulated in CRSwNP tissues and cells. Moreover, the mRNA expression of TNF-α, IL-1β and IL-6 was increased in CRSwNP tissues, while let-7a-5p mimic inhibited the expression of TNF-α, IL-1β and IL-6. Besides that, let-7a-5p was negatively correlated with TNF-α, IL-1β and IL-6 in CRSwNP tissues. In our study, IL-6 was found to be a target gene of let-7a-5p. Additionally, let-7-5p mimic obviously reduced the protein levels of Ras, p-Raf1, p-MEK1 and p-ERK1/2, while IL-6 overexpression destroyed the inhibitory effect of let-7a-5p on the Ras-MAPK pathway in CRSwNP. Conclusion We demonstrated that let-7a-5p/IL-6 interaction regulated the inflammatory response through the Ras-MAPK pathway in CRSwNP.


2021 ◽  
pp. 0271678X2110267
Author(s):  
Peipei Pan ◽  
Shantel Weinsheimer ◽  
Daniel Cooke ◽  
Ethan Winkler ◽  
Adib Abla ◽  
...  

Brain arteriovenous malformations (bAVM) are an important cause of intracranial hemorrhage (ICH), especially in younger patients. The pathogenesis of bAVM are largely unknown. Current understanding of bAVM etiology is based on studying genetic syndromes, animal models, and surgically resected specimens from patients. The identification of activating somatic mutations in the Kirsten rat sarcoma viral oncogene homologue (KRAS) gene and other mitogen-activated protein kinase ( MAPK) pathway genes has opened up new avenues for bAVM study, leading to a paradigm shift to search for somatic, de novo mutations in sporadic bAVMs instead of focusing on inherited genetic mutations. Through the development of new models and understanding of pathways involved in maintaining normal vascular structure and functions, promising therapeutic targets have been identified and safety and efficacy studies are underway in animal models and in patients. The goal of this paper is to provide a thorough review or current diagnostic and treatment tools, known genes and key pathways involved in bAVM pathogenesis to summarize current treatment options and potential therapeutic targets uncovered by recent discoveries.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Jackson Peterson ◽  
Siqi Li ◽  
Erin Kaltenbrun ◽  
Ozgun Erdogan ◽  
Christopher M. Counter

AbstractThe ability to translate three nucleotide sequences, or codons, into amino acids to form proteins is conserved across all organisms. All but two amino acids have multiple codons, and the frequency that such synonymous codons occur in genomes ranges from rare to common. Transcripts enriched in rare codons are typically associated with poor translation, but in certain settings can be robustly expressed, suggestive of codon-dependent regulation. Given this, we screened a gain-of-function library for human genes that increase the expression of a GFPrare reporter encoded by rare codons. This screen identified multiple components of the mitogen activated protein kinase (MAPK) pathway enhancing GFPrare expression. This effect was reversed with inhibitors of this pathway and confirmed to be both codon-dependent and occur with ectopic transcripts naturally coded with rare codons. Finally, this effect was associated, at least in part, with enhanced translation. We thus identify a potential regulatory module that takes advantage of the redundancy in the genetic code to modulate protein expression.


Sign in / Sign up

Export Citation Format

Share Document