scholarly journals Chemical composition of extracts from Chaetomorpha linum (Miller) Kütz. A potential use in the cosmetic Industry

Author(s):  
Sylvin Sutour ◽  
Tao XU ◽  
Hervé Casabianca ◽  
Mathieu Paoli ◽  
Dominique de Rocca-Serra ◽  
...  
Clay Minerals ◽  
1991 ◽  
Vol 26 (2) ◽  
pp. 149-168 ◽  
Author(s):  
S. Hillier ◽  
B. Velde

AbstractThe chemical composition of about 500 diagenetic chlorites, determined by electron microprobe, has been studied in six different sedimentary sequences spanning conditions from early diagenesis to low-grade metamorphism, in the temperature range 40–330°C. The range of Fe/(Fe + Mg) is almost complete and is positively correlated with Al. Five sequences show the same compositional variation. In each, the most siliceous chlorites have the lowest R2+, substantially more octahedral than tetrahedral Al, and the lowest octahedral totals. Conversely, the least siliceous have the highest R2+, nearly equal octahedral and tetrahedral Al, and octahedral totals close to that for an ideal trioctahedral mineral. A dioctahedral substitution Si[]R2−2 (where [] represents a vacant octahedral site) which decreases with temperature, describes this variation. Low octahedral totals are, however, induced by the method of calculation and need not indicate vacancies; for published wet chemical analyses of metamorphic chlorites they may simply indicate oxidation of Fe. Intergrown dioctahedral phyllosilicates may partly account for apparent vacancies in diagenetic chlorites. Nevertheless, the correlation of composition with temperature and similarities to the temperature-related evolution of synthetic chlorites, suggest that diagenetic chlorites are compositionally distinct from, but metastable with respect to, fully trioctahedral metamorphic chlorites. Temperature-related trends are modified by bulk composition, complicating their potential use for low-temperature geothermometry.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Dhekra Mhalla ◽  
Dalel Ben Farhat-Touzri ◽  
Slim Tounsi ◽  
Mohamed Trigui

The increasing insect resistance against Bacillus thuringiensis delta-endotoxins is a serious problem which makes it urgent to look for new eco-friendly strategies. Combining these toxins with other biomolecules is one of the promising strategies against insect pests. In this work, we evaluated the bioinsecticidal potential of Rumex tingitanus extracts and B. thuringiensis strain BLB250 against Spodoptera littoralis (Lepidoptera: Noctuidae) larvae. The chemical composition of the hexane extract, the most active fraction, was analyzed to validate the correlation between chemical composition and biological activity. Among the tested extracts, only the hexanic extract showed toxicity against first and second instar larvae with LC50 of 2.56 and 2.95 mg g−1, respectively. The Bacillus thuringiensis BLB250 delta-endotoxins showed toxicity with an LC50 of 56.3 μg g−1. Therefore, the investigated combinational effect of BLB250 delta-endotoxins and R. tingitanus hexane extract proved significant synergistic effect against S. littoralis larvae. The GC-MS analysis of R. tingitanus hexane extract showed the richness of this extract in phytosterols such as β and γ-sitosterol (48.91%), campesterol (6.43%), and β-amyrin (8.92%) which are known for their insecticidal activity. This novel finding highlights the potential use of this combination against insect pests to prevent the appearance of resistance problems.


Clay Minerals ◽  
2015 ◽  
Vol 50 (5) ◽  
pp. 593-606 ◽  
Author(s):  
A. Nkalih Mefire ◽  
A. Njoya ◽  
R. Yongue Fouateu ◽  
J.R. Mache ◽  
N.A. Tapon ◽  
...  

AbstractThirty clay samples collected from three hills in Koutaba (west Cameroon) were characterized in order to evaluate their potential use as raw materials for ceramics. After preliminary mineralogical identification by X-ray diffraction, three representative samples from the three different hills, referred to hereafter as K1M, K2M and K3M, were selected for further investigation by X-ray fluorescence, plasticity, granularity and thermogravimetric analysis. The main clay minerals are kaolinite (32–51%) and illite (up to 12%). Additional major phases are quartz (32–52%), goethite (6–7%) and feldspars (0–4%). The chemical composition showed variable amounts of SiO2(60–72%), Al2O3(15–20%) and Fe2O3(1–9%), in accordance with the quartz abundance in all of the samples studied. The particle-size distribution showed a large proportion of silty fraction (64–88%) with moderate sandy (9–19%) and clayey fractions ( < 5% for K2M, 12% for K1M and 20% for K3M). All of the clays showed moderate plasticity-index values (8–11%). Because of these characteristics, K1M and K3M may be suitable for use in common bricks and hollow ceramic products. Sieving or the addition of ball clays is recommended to increase the plasticity of sample K2M for use in common bricks.


2016 ◽  
Vol 2016 ◽  
pp. 1-5 ◽  
Author(s):  
Nguyen Hai Dang ◽  
Pham Huong Nhung ◽  
Bui Thi Mai Anh ◽  
Dinh Thi Thu Thuy ◽  
Chau Van Minh ◽  
...  

Background. Inhibition ofα-glucosidase is an important factor to control postprandial hyperglycemia in type 2 diabetes mellitus.Citrusessential oils (CEO) are among the most widely used essential oils, and some of them exhibited promising antidiabetic effect. However, theα-glucosidase inhibition of CEO has not been investigated so far. The present work aims to evaluate theα-glucosidase inhibition of essential oils from six VietnameseCitruspeels.Methods. The chemical composition of essential oils obtained by hydrodistillation from sixCitruspeels was analyzed by GC-MS. All essential oils were tested for their inhibitory activity onα-glucosidase usingp-nitrophenyl-α-D-glucopyranoside as substrate.Results. In Buddha’s hand and lime peels, the major components were limonene (59.0–61.31%) andγ-terpinene (13.98–23.84%) while limonene (90.95–95.74%) was most abundant in pomelo, orange, tangerine, and calamondin peels. Among the essential oils, the Buddha’s hand oil showed the most significantα-glucosidase inhibitory effect with the IC50value of 412.2 μg/mL. The combination of the Buddha’s hand essential oil and the antidiabetic drug acarbose increased the inhibitory effect.Conclusions. The results suggested the potential use of Buddha’s hand essential oil as an alternative in treatment of type 2 diabetes mellitus.


Author(s):  
Ciliana Flórez-Montes ◽  
Óscar Marino Mosquera-Martínez ◽  
Andrés Felipe Rojas-González

Currently, the use of agro-industrial waste represents a viable alternative for obtaining valuable compounds that, in the case of biorefineries, is an opportunity for improvement. In this context, the aim of our study was to determine the flavonoid content and the antioxidant capacity of 30 byproducts from fruit processing in Colombia and propose possible applications. We analyzed the antioxidant capacity of the ethanolic extracts from each byproduct using the ferric reducing antioxidant power (FRAP) and the reducing power of antioxidant activity (RPAA) assays, as well as the oxygen radical absorbance capacity (ORAC) test. We found that tree tomato peels and stem and peach peels had a high flavonoid content, with values greater than 8,271.82 ± 702.70 μg quercetin per gram of dry sample. We also found that mango (22,676.57 ± 759.71 μg TE1/g Sdb, 3,692.38 ± 92.67 μg GAE/g Sdb), soursop (22,117.13 ± 754.94 μg TE1/g Sdb, 4,858.79 ± 156.71 μg GAE/g Sdb, 14,713.39 ± 757.95 μg TE2/g Sdb), grape (17,027.85 ± 765.11 μg TE1/g Sdb, 13,395.15 ± 659.31 μg TE2/g Sdb), peach peels (17,910.21 ± 1,424.33 μg TE2/g Sdb) and seeds (4,316.46 ± 112.00 μg GAE/g Sdb, 20,093.32 ± 1,317.93 μg TE2/g Sdb), and grape stalk (3,552.26 ± 31.63 μg GAE/g Sdb) showed a high antioxidant capacity in the different tests performed. Our results demonstrate that fruit byproducts have potential use in the pharmaceutical,  ood, and cosmetic industry due to  heir flavonoids content and their high antioxidant capacity.


Molecules ◽  
2021 ◽  
Vol 26 (17) ◽  
pp. 5255
Author(s):  
Sara Gonçalves ◽  
Isabel Gaivão

The natural cosmetics market has grown since consumers became aware of the concept of natural-based ingredients. A significant number of cosmetics have an ecological impact on the environment and carry noxious and chemically potent substances. Thus, the use of natural and organic cosmetics becomes increasingly important since it is clear that topical treatment with cosmeceuticals can help improve skin rejuvenation. A substantial investigation into the benefits that fruits and plants can bring to health is required. Studies have shown that antigenotoxic properties are linked to anti-aging properties. Several studies have shown potential antigenotoxicity in natural ingredients such as Almonds (Prunus dulcis), Elderberry (Sambucus nigra), Olives (Olea europaea), and Grapes (Vitis vinifera). This review presents an overview of research conducted on these natural ingredients, the most common in the Northeast of Portugal. This region of Portugal possesses the most organic farmers, and ingredients are easily obtained. The Northeast of Portugal also has climatic, topographic, and pedological differences that contribute to agricultural diversity.


2012 ◽  
Vol 7 (1) ◽  
pp. 1934578X1200700 ◽  
Author(s):  
Teresa Cerchiara ◽  
Serafina V. Straface ◽  
Giuseppe Chidichimo ◽  
Emilia L. Belsito ◽  
Angelo Liguori ◽  
...  

The purpose of this study was to analyse the chemical composition of Spartium junceum L. (also known as Spanish Broom) aromatic water and to evaluate its cytotoxic activity against a series of human cancer cell lines (melanoma: RPMI 7932; leukemia: K562; breast cancer cell: MCF7-Bart and MCF7-ICLC, colon adenocarcinoma: SW480). The results show that the aromatic water was cytotoxic toward the tumor cell lines analyzed (RPMI 7932, K562, MCF7-Bart, MCF7-ICLC, SW480), while it did not appreciably alter the viability of normal keratinocytes (NCTC 2544) suggesting its potential use as an antitumor agent for cancer treatment and/or prevention.


Resources ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 101 ◽  
Author(s):  
Catarina Lourenço-Lopes ◽  
Maria Fraga-Corral ◽  
Cecilia Jimenez-Lopez ◽  
Antia G. Pereira ◽  
Paula Garcia-Oliveira ◽  
...  

Marine macroalgae are a suitable source of ingredients due to their huge diversity, availability and nutritional and chemical composition. Their high content in proteins, carbohydrates and vitamins, but also in secondary metabolites such as phenolic compounds, terpenoids or pigments, make them great candidates for industrial applications. The cosmetic industry is one of the biggest in the world and the search for new ingredients is constantly growing as the consumer trend now is going back to those traditional cosmetics with a more natural composition. Moreover, the concept of a circular economy is also gaining importance due to the unsustainable situation of the natural resources. Although macroalgae are already used in cosmetics, especially as thickening and gelling agents, they possess an unexplored potential, not only as excipients and additives but also as a source of new active ingredients. In this context, macroalgae are considered in many cases as resources still underexploited and they could even be obtained from the waste of other industrial sectors and be used for recovering active molecules. Therefore, the aim of this review is to compile information about the different macroalgae metabolites and their possible applications in the cosmetic industry, which could employ circular economy models.


Sign in / Sign up

Export Citation Format

Share Document