scholarly journals Promising Antibacterial Effect of Copper Oxide Nanoparticles against Several Multidrug Resistant Uropathogens

2018 ◽  
Vol 24 (3) ◽  
pp. 213-218 ◽  
Author(s):  
Hadi Sedigh Ebrahim-Saraie ◽  
Hamid Heidari ◽  
Vahid Rezaei ◽  
Seyed Mohammad Javad Mortazavi ◽  
Mohammad Motamedifar

Background: Recently, nanotechnology has been demonstrated to be a promising application to overcome the problem of antibiotic resistance. In the present study, we aimed to determine the antibacterial activity of copper oxide nanoparticles (CuO NPs) on several multiple-drug resistant (MDR) uropathogenic strains. Methods: This in vitro case-control study was performed on 4 uropathogenic bacteria including Staphylococcus aureus, Enterococcus faecalis, Escherichia coli and Pseudomonas aeruginosa. The antibacterial property was evaluated by well diffusion method at different concentrations of CuO NPs. Results: Overall, NPs concentration of 10, 25 and 50 µg/mL showed the remarkable antibacterial activity. A lower effect was seen against S. aureus strains. CuO NPs exhibited maximum bacterial growth inhibition against E. faecalis strains. In most of the cases, the zone of inhibition in 50 µg/mL concentration was closest to control positive antibiotics. Conclusion: In summary, CuO NPs as an alternative to conventional antibiotics that are currently used showed dose-dependent on antibacterial activity against different uropathogens, specificity towards pathogenic Gram-positive bacteria. This promising antibacterial activity of CuO NPs suggesting the development of NPs coatings on the different surface of biomedical materials for applications in different antimicrobial control systems.

Author(s):  
Haider Qassim Raheem ◽  
Takwa S. Al-meamar ◽  
Anas M. Almamoori

Fifty specimens were collected from wound patients who visited Al-Hilla Teaching Hospital. The samples were grown on Blood and MacConkey agar for 24-48 hr at 37oC. The bacterial isolates which achieved as a pure and predominant growth from clinical samples as Pseudomonas fluorescens, were identified using morphological properties and Vitek2 system. The anti-bacterial activity of copper oxide nanoparticles (CuO NPs) against was tested by (disk diffusion assay) using dilutions of (400, 200, 100, 50, 25, and 12.5‎µ‎g/ml). The (MIC and MBC) of each isolate was determined. CuO NPs shows wide spectrum antibacterial activity against tested bacteria with rise zone of inhibition diameter that is proportionate with the increase in nanoparticle concentration. The MIC of CuO NPs extended from 100-200‎µ‎g/ml and the MBC ranged from 200-400‎µ‎g/ml. The antibiotic profile was determined by Viteck 2 compact system (Biomérieux). CuO NPs‎ found highly effective and safe in P. fluorescens wounds infections comparing with used antibiotics.


2020 ◽  
Vol 3 (3) ◽  
Author(s):  
Jothi M ◽  
Aparna Dhevi S

Copper oxide (CuO) is an inorganic compound with monoclinic crystal structure. CuO nano particles attracted considerable attention due to its numerous applications in the field of optical, catalytic, mechanical, organic dye degeneration, biomedicine, pharmaceutics,cosmetics and different medical purposes. In the present study, copper oxide nanoparticles have been prepared by biological method using the flower extracts of Nyctanthes arbortristis as a reducing agent. The resulting samples were characterized using X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR), Energy Dispersive analysis of X-rays (EDX), UV-Visible Spectroscopy (UV) and Antibacterial activity. From XRD studies, the average crystalline size of the obtained sample was calculated by Debye-Scherrer formula and it was found to be 33.13 nm. The band gap energy of the synthesized nano particle was estimated from UV studies and its value is 1.19 eV. The morphological characteristics were absorbed by SEM studies. The EDX and FTIR studies confirm the presence of Copper Oxide nano particles.The antibacterial activity of CuO-nano particles on selected bacteria was done using agar diffusion method.


2018 ◽  
Vol 17 (1) ◽  
pp. 105-111 ◽  
Author(s):  
Nasim Rahmani Kukia ◽  
Ardeshir Abbasi ◽  
Seyyed Maysam Abtahi Froushani

Due to cytotoxic potential, Copper Oxide Nanoparticles (CuO NPs) have recently been studied in various in vivo and in culture cell line. Also, CuO has received much attention in cancer therapy. We aimed to evaluate the cytotoxicity of CuO NPs on glial cancer (B92) cell line. B92 cancer cells were cultured with CuO NPs at different concentrations (5, 10, and 20 μg/ml) with 30 and 60 nm particle size. Then, cancer cells were incubated for 24 hrs. The apoptosis and cytotoxicity of cells were estimated by acridine orange/propidium iodide staining and MTT assay, respectively. Both sizes of CuO NPs had cytotoxic effect. Even with the lowest concentration, the cytotoxic impact accommodated 32% of cell apoptosis with 30 nm size. When the concentration of CuO NPs increased, viability decreased and apoptosis increased. However, these amounts have no significant changes in the concentration of 10 to 20 μg/ml between two particle sizes (30 and 60 nm). The IC50 was decreased as the size of particles increased, but there was no significant change. This finding suggests that exposure to CuO NPs had significant cytotoxic effect with the sizes tested when compared to unexposed control in a way that the smaller size and higher concentration exerted the maximum cytotoxic effects. It seems that augmentation may not have any impact on their in vitro cytotoxicity.Dhaka Univ. J. Pharm. Sci. 17(1): 105-111, 2018 (June)


2020 ◽  
Vol 847 ◽  
pp. 102-107
Author(s):  
Harish Kumar ◽  
Avneesh Kumar Gehlaut ◽  
Himanshu Gupta ◽  
Ankur Gaur ◽  
Jin Won Park

This research is based on the creation of copper oxide nanoparticles (CuO-NPs) hydrogel through in situ method. The effective UV-Vis spectroscopy absorption peak of 610 nm indicates the existence of copper oxide nanoparticles (CuO-NP) group because of surface Plasmon resonance (SPR). Characterization of CuO-NPs was carried out by SEM, TEM, EDX, and XRD. However, the action of prepared nanocomposite hydrogels swelling was examined at different pH and saline solutions. In addition, CuO-NPs were also tested using the disk plate diffusion method by means of adverse effect of bacteria Gram-positive bacteria (Bacillus subtilis) as well as Gram-negative bacteria (Escherichia coli). The CuO-NPs hydrogels isolated from lab-made CMC (made from sugarcane bagasse) indicates that the Bacillus subtilis as well as Escherichia coli have greater antibacterial activity compared with synthetic CMC purchase from the market. CuO-NPs can be used effectively in biomedical applications with the production of hydrogels.


2019 ◽  
Author(s):  
Ziad T. Khodair ◽  
Mohanad W. Mahdi Alzubaidy ◽  
Asmaa M. Salih Almohaidi ◽  
Ammar Ahmed Sultan ◽  
Sana M. H. AL-Shimmary ◽  
...  

Author(s):  
Ksh. Sangeeta Devi ◽  
Atom Rajiv Singh ◽  
D. Velmurugan ◽  
M. Damayanti Devi ◽  
Deepak Singh Lourembam ◽  
...  

Background: Copper oxide nanoparticles(CuO NPs) have been powerful evidence in several in vitro studies such as cytotoxicity and antimicrobial compared with other metal oxide. Here, we have synthesized green CuO NPs using Coix lacryma jobi leaves extracts. Place and Duration of Study: Department of Chemistry  Manipur University, Manipur, India and Regional Institute of Medical Sciences, Imphal, India between February 2019 to March 2021. Methodology: Green CuO NPs nanoparticles were synthesized from Copper chloride dihydrate (CuCl2.2H2O) using Coix lacryma jobi leaves extract, and the synthesized green CuO NPs were characterized using Field Emission Scanning Electron Microscopy (FESEM) - Energy Dispersive Spectroscopy, IR Spectroscopy, UV-Visible Spectroscopy, Powder X-Ray diffraction Spectroscopy and HR-TEM where FESEM-EDS determined the purity of CuO NPs. Results: No other impurities present were observed in EDS, and the PXRD spectra show the crystallite size of CuO NPs with respect to the (002) plane is found to be 25.2 nm, and the presence of CuO NPs at adsorption spectrum with a distinct peak at 282 nm was determined by  UV-Visible spectroscopy and the homogenous morphology and crystalline nature of the CuO NPs were determined from TEM micrograph and SAED pattern. In applications, the substantial anticancer activity of green CuO NPs (synthesized using Coix lacryma jobi leaves extract) was proved on human cervical and lung cancer cell lines with IC50 values of 31.88 μg/ml and 15.61 μg/ml, respectively.


2020 ◽  
Vol 09 ◽  
Author(s):  
Akshaya Venkatramanan ◽  
Akila Ilangovan ◽  
Pakutharivu Thangarajan ◽  
Anitha Saravanan ◽  
Balachandar M

Background: The Nanomaterials/Nanoparticles are of great interest today because of their small size and large surface area, modular and easily tunable morphology and size. Copper oxide (CuO) nanoparticles are widely used in dye-sensitized solar cells (DSSCs). Research on the synthesis and properties of metallic nanomaterials is a growing field of nanotechnology due to the use of nanoparticles in the scientific, technical, pharmaceutical, and biomedical fields. Green synthesis is an emerging technology for the production of nanoparticles due to its many advantages over traditional physical processes and the method of chemical synthesis. Methods: In this study, we report the cost-effective, long-lasting, stable, and regenerative aqueous extract of Eletteria cardamom seeds to target the synthesis of copper oxide nanoparticles (CuO NPs). This method is completely green, free from toxic and harmful solvents. CuO NPs were synthesized from a cupric nitrate mixture and the aqueous extracts of Eletteria cardamom seeds were kept at room temperature for 24 h. CuO NPs were characterized using UV-visible spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), dynamic light scattering (DLS), and Fourier Transfer infra-red spectroscopy (FTIR) analyzes. UV - Vis spectroscopy revealed the presence of CuO NPs. Results: SEM images stated that the particles were spherical and ranged in size from 1–100nm. FTIR spectra of control (seed extract) and synthesized CuO NPs identify functional groups of active components. In addition, the synthesized CuO NPs were tested for antimicrobial activity by standard disc diffusion method. Conclusion: Nanoparticles found that Escherichia coli and Staphylococcus aureus resistant areas were observed around each well with antimicrobial activity against disease-causing pathogenic strains.


Author(s):  
S. D. Chavan

Green synthesis of nanoparticles is the recent and advanced technology in the fields of nanoscience and biotechnology which produces the eco-friendly and more efficient antimicrobial agents. Therefore, present study reported a simple, suitable and cost effective method of preparation of bioactive antimicrobial agents by the green strategy of copper oxide nanoparticles with Moringa oleifera through a green route method. In this green process the vital and varsatile medicinal quality plant i.e., Moringa oleifera leaves extract as a reducing agent as well as stabilizing agent were used to prepare the copper oxide nanoparticles. The synthesized copper oxide nanoparticles were characterized by UV- Vis, SEM, and TEM techniques. The antibacterial activity of the samples were tested by disc diffusion method against gram positive bacteria (S.aureus), gram negative bacteria (E.coli ). The size of synthesized copper oxide nanoparticles was in the ranges around 60-100 nm with dot and spherical shaped morphology. The antimicrobial activities of biofunctionalized copper oxide nanoparticles were observed significant inhibition activity. From this analysis, the green synthesized biofunctionalization method what we have suggested is exposed assure results in the antibacterial activity tests. Moreover, biofunctionalized copper oxide nanoparticles are shown superior performance in the opposed to of microbes.


Sign in / Sign up

Export Citation Format

Share Document