scholarly journals Green Synthesis of Copper Oxide Nanoparticles Using Coix lacryma jobi Leaves Extract and Screening of its Potential Anticancer Activities

Author(s):  
Ksh. Sangeeta Devi ◽  
Atom Rajiv Singh ◽  
D. Velmurugan ◽  
M. Damayanti Devi ◽  
Deepak Singh Lourembam ◽  
...  

Background: Copper oxide nanoparticles(CuO NPs) have been powerful evidence in several in vitro studies such as cytotoxicity and antimicrobial compared with other metal oxide. Here, we have synthesized green CuO NPs using Coix lacryma jobi leaves extracts. Place and Duration of Study: Department of Chemistry  Manipur University, Manipur, India and Regional Institute of Medical Sciences, Imphal, India between February 2019 to March 2021. Methodology: Green CuO NPs nanoparticles were synthesized from Copper chloride dihydrate (CuCl2.2H2O) using Coix lacryma jobi leaves extract, and the synthesized green CuO NPs were characterized using Field Emission Scanning Electron Microscopy (FESEM) - Energy Dispersive Spectroscopy, IR Spectroscopy, UV-Visible Spectroscopy, Powder X-Ray diffraction Spectroscopy and HR-TEM where FESEM-EDS determined the purity of CuO NPs. Results: No other impurities present were observed in EDS, and the PXRD spectra show the crystallite size of CuO NPs with respect to the (002) plane is found to be 25.2 nm, and the presence of CuO NPs at adsorption spectrum with a distinct peak at 282 nm was determined by  UV-Visible spectroscopy and the homogenous morphology and crystalline nature of the CuO NPs were determined from TEM micrograph and SAED pattern. In applications, the substantial anticancer activity of green CuO NPs (synthesized using Coix lacryma jobi leaves extract) was proved on human cervical and lung cancer cell lines with IC50 values of 31.88 μg/ml and 15.61 μg/ml, respectively.

Author(s):  
Seyedeh R. Alizadeh ◽  
Mohammad A. Ebrahimzadeh

Background: Cancer is defined as an abnormal/uncontrolled cell growth that shows rapid cell division. This disease is annually recognized in more than ten million people. Nanomaterials can be used as new strategies for cancer therapy. Nanostructured devices have developed for drug delivery and controlled release and created novel anticancer chemotherapies. Nanomaterials were taken into consideration because of their new properties, containing a large specific surface area and high reactivity. Copper oxide nanoparticles (CuONPs) have potential applications in many fields like heterogeneous catalysis, antibacterial, anticancer, antioxidant, antifungal, antiviral, imaging agents, and drug delivery agents in biomedicine. CuONPs display different physical properties, such as hightemperature superconductivity, electron correlation effects, and spin dynamics. NPs can be synthesized using different methods like physical, chemical, and biological methods. Methods: Copper oxide nanoparticles (CuONPs) have been suggested for its broad usage in biomedical applications. In this review, we tried to exhibit the results of significant anticancer activity of green synthesized CuONPs and their characterization by different analytical techniques such as UV-Vis, FT-IR, XRD, EDAX, DLS, SEM, and TEM. Results: The green method for the synthesis of CuO nanoparticles as eco-friendly, cost-effective, and facile method is the more effective method. Synthesized CuONPs from this method have an appropriate size and shape. The Green synthesized CuONPs exhibited high potential against several breast cancer (AMJ-13, MCF-7, and HBL-100 cell lines), cervical cancer (HeLa), colon cancer (HCT-116), gastric cancer (human adenocarcinoma AGS cell line), lung cancer (A549), leukemia cancer, and other cancers with the main toxicity approach of increasing ROS production. Conclusion: The present review confirms the importance of green synthesized CuO nanoparticles in medical science especially cancer therapy that exhibited high activity against different cancer in both in vitro and in vivo. The main toxicity approach of CuONPs is increasing the production of reactive oxygen species (ROS). It needs to perform more studies about in vivo cancer therapy and following clinical trial testing in the future. We believe that green synthesized CuO nanoparticles can be used for the improvement of different diseases.


2018 ◽  
Vol 17 (1) ◽  
pp. 105-111 ◽  
Author(s):  
Nasim Rahmani Kukia ◽  
Ardeshir Abbasi ◽  
Seyyed Maysam Abtahi Froushani

Due to cytotoxic potential, Copper Oxide Nanoparticles (CuO NPs) have recently been studied in various in vivo and in culture cell line. Also, CuO has received much attention in cancer therapy. We aimed to evaluate the cytotoxicity of CuO NPs on glial cancer (B92) cell line. B92 cancer cells were cultured with CuO NPs at different concentrations (5, 10, and 20 μg/ml) with 30 and 60 nm particle size. Then, cancer cells were incubated for 24 hrs. The apoptosis and cytotoxicity of cells were estimated by acridine orange/propidium iodide staining and MTT assay, respectively. Both sizes of CuO NPs had cytotoxic effect. Even with the lowest concentration, the cytotoxic impact accommodated 32% of cell apoptosis with 30 nm size. When the concentration of CuO NPs increased, viability decreased and apoptosis increased. However, these amounts have no significant changes in the concentration of 10 to 20 μg/ml between two particle sizes (30 and 60 nm). The IC50 was decreased as the size of particles increased, but there was no significant change. This finding suggests that exposure to CuO NPs had significant cytotoxic effect with the sizes tested when compared to unexposed control in a way that the smaller size and higher concentration exerted the maximum cytotoxic effects. It seems that augmentation may not have any impact on their in vitro cytotoxicity.Dhaka Univ. J. Pharm. Sci. 17(1): 105-111, 2018 (June)


2021 ◽  
Author(s):  
Kijay Bahadur Singh ◽  
Neelam Gautam ◽  
Deen Dayal Upadhyay ◽  
Gulam Abbas ◽  
Gajanan Pandey

Abstract In this work, we reported the green synthesis of Solanum nigrum extract capped copper oxide nanoparticles (SN@CuO NPs) at room temperature, avoiding harsh, toxic, and environment unfriendly chemicals. The synthesized SN@CuO NPs, were analyzed with the help of spectroscopic techniques. UV-visible spectroscopy confirmed the synthesis of SN@CuO NPs in reaction mixture while fourier transform infrared spectroscopy (FTIR) results revealed capping of phytochemicals of Solanum nigrum over the surface of CuO NPs. Morphology and elemental composition of formed SN@CuO NPs were explored with the help of FE-SEM, TEM, and EDS, respectively. Crystalline nature, surface charge and specific surface area was characterized using XRD pattern, DLS and BET analyses, respectivley. The data obtained from spectroscopic analyses specified the formation of mesoporous, positively charged and highly stabilized CuO nanoparticles due to adsorption of phytochemicals present in Solanum nigrum leaf extract on the CuO nanoparticle’s surface. SN@CuO NPs have shown promising catalytic activity towards reduction of highly carcinogenic dye Congo red making use of sodium borohydride. Negatively charged reactants like anionic Congo red molecules and BH4− ions eagerly adsorbed on positively charged, small sizes (5–6 nm), mesoporous SN@CuO NPs surface having wide surface area. It is proposed that BH4− ions interacted with SN@CuO NPs to form Cu tetrahydroborates dihydrogen bonded (DHB) tetrahedral L2Cu(ɳ2-BH4) complex, which is proved as an effective reducing agent. This complex acts as dihydrogen source for rapid reduction of azo bond. UV-visible, FTIR, 1H NMR, 13C NMR, and LC-MS studies of reaction mixture at different reaction stages have shown that the major degradation intermediates were benzidine and α-naphthol. The apparent rate constants for the products at intermediate and final degradation stages have been found to be 0.468 min− 1 and 0.0189 min− 1, respectively. A plausible degradation mechanism for Congo red reduction has also been proposed in this study.


2018 ◽  
Vol 24 (3) ◽  
pp. 213-218 ◽  
Author(s):  
Hadi Sedigh Ebrahim-Saraie ◽  
Hamid Heidari ◽  
Vahid Rezaei ◽  
Seyed Mohammad Javad Mortazavi ◽  
Mohammad Motamedifar

Background: Recently, nanotechnology has been demonstrated to be a promising application to overcome the problem of antibiotic resistance. In the present study, we aimed to determine the antibacterial activity of copper oxide nanoparticles (CuO NPs) on several multiple-drug resistant (MDR) uropathogenic strains. Methods: This in vitro case-control study was performed on 4 uropathogenic bacteria including Staphylococcus aureus, Enterococcus faecalis, Escherichia coli and Pseudomonas aeruginosa. The antibacterial property was evaluated by well diffusion method at different concentrations of CuO NPs. Results: Overall, NPs concentration of 10, 25 and 50 µg/mL showed the remarkable antibacterial activity. A lower effect was seen against S. aureus strains. CuO NPs exhibited maximum bacterial growth inhibition against E. faecalis strains. In most of the cases, the zone of inhibition in 50 µg/mL concentration was closest to control positive antibiotics. Conclusion: In summary, CuO NPs as an alternative to conventional antibiotics that are currently used showed dose-dependent on antibacterial activity against different uropathogens, specificity towards pathogenic Gram-positive bacteria. This promising antibacterial activity of CuO NPs suggesting the development of NPs coatings on the different surface of biomedical materials for applications in different antimicrobial control systems.


2020 ◽  
Vol 3 (2) ◽  
Author(s):  
Hemalatha D ◽  
Shanmugapriya B

Copper oxide nanoparticles were synthesized by Chemical Precipitation Method using Copper Chloride Dihydrate (CuCl2. 2H2O), Sodium hydroxide (NaOH) as a precipitating agent. The Synthesized Copper Oxide nanoparticles were characterized by X-ray diffraction (XRD), Scanning Electron Microscope (SEM), Energy Dispersive X-ray (EDX) Spectroscopy, Fourier Transform Infrared Spectroscopy (FTIR). The Antibacterial activity of copper Oxide nanoparticles was tested against both gram positive and negative bacteria. In XRD, the crystal size and dislocation density of Copper Oxide nanoparticles were calculated, Element’s purity was determined by EDX spectra. The SEM image confirms the presence of homogeneous spherical distribution of copper oxide nanoparticles. The nanoparticles shows interactions between copper and oxygen atoms were supported by FTIR studies. Copper Oxide nanoparticles have exhibits good antibacterial activity against Klebsiella pneumonia, Escherichia coli,Staphylococcus, and Bacillus cereus.


2021 ◽  
Vol 15 (3) ◽  
Author(s):  
Ali Davari ◽  
Vahid Hakimzadeh ◽  
Elham Mahdian ◽  
Mostafa Shahidi-Noghabi

In this work, we have synthesized copper oxide nanoparticles using Iranian violaceae flower extract and explored its biological activity. Green synthesis has emerged as a reliable, sustainable and ecofriendly protocol for synthesizing a wide range of nanomaterials and hybrid materials. In this paper, we report the synthesis of Copper oxide nanoparticles by a simple biological route using the extract of Iranian violaceae flower and CuSO4, 5 H2O was used to synthesis the copper oxide Nanoparticles. The synthesized copper oxide nanoparticles were characterized using UV–visible spectroscopy, FTIR spectroscopy, FESEM, EDAX, and XRD techniques. UV –Visible analysis shows a characteristic peak around 266 nm for copper oxide nanoparticles and which is characteristic copper oxide nanoparticles. FTIR spectroscopy was used to characterize various capping and reducing agents present in the plant extract responsible for nanoparticle formation. The surface morphology was characterized using FESEM. The EDAX and XRD pattern suggested that prepared copper oxide nanoparticles were highly pure. The average particle size was calculated as 78.5 nm and α-copper oxide for all diffraction peaks (JCPDS card No. 41-1449) using the XRD technique. Our finding also support the synthesis of CuO NPs from Iranian violaceae flower sources due to relative abundance of plants for the production of reducing and stabilizing agents required for CuO NPs synthesis, potential efficiency of plant biomolecules in enhancing the toxicity effect of CuO NPs against microbes, prevention of environmental pollution due of nontoxic chemicals and degradation effectiveness of CuO NPs synthesized from plant sources. Furthermore, this study provides useful information on the rapid synthesis of CuO NPs with desired properties from plant extracts. Copper oxide NPs can have a good candidate for different applications.


Author(s):  
Haider Qassim Raheem ◽  
Takwa S. Al-meamar ◽  
Anas M. Almamoori

Fifty specimens were collected from wound patients who visited Al-Hilla Teaching Hospital. The samples were grown on Blood and MacConkey agar for 24-48 hr at 37oC. The bacterial isolates which achieved as a pure and predominant growth from clinical samples as Pseudomonas fluorescens, were identified using morphological properties and Vitek2 system. The anti-bacterial activity of copper oxide nanoparticles (CuO NPs) against was tested by (disk diffusion assay) using dilutions of (400, 200, 100, 50, 25, and 12.5‎µ‎g/ml). The (MIC and MBC) of each isolate was determined. CuO NPs shows wide spectrum antibacterial activity against tested bacteria with rise zone of inhibition diameter that is proportionate with the increase in nanoparticle concentration. The MIC of CuO NPs extended from 100-200‎µ‎g/ml and the MBC ranged from 200-400‎µ‎g/ml. The antibiotic profile was determined by Viteck 2 compact system (Biomérieux). CuO NPs‎ found highly effective and safe in P. fluorescens wounds infections comparing with used antibiotics.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Alaa El Din Mahmoud ◽  
Khairia M. Al-Qahtani ◽  
Sahab O. Alflaij ◽  
Salma F. Al-Qahtani ◽  
Faten A. Alsamhan

AbstractEnvironmentally friendly copper oxide nanoparticles (CuO NPs) were prepared with a green synthesis route without using hazardous chemicals. Hence, the extracts of mint leaves and orange peels were utilized as reducing agents to synthesize CuO NPs-1 and CuO NPs-2, respectively. The synthesized CuO NPs nanoparticles were characterized using scanning electron microscopy (SEM), Energy Dispersive X-ray Analysis (EDX), BET surface area, Ultraviolet–Visible spectroscopy (UV–Vis), and Fourier Transform Infrared Spectroscopy (FT-IR). Various parameters of batch experiments were considered for the removal of Pb(II), Ni(II), and Cd(II) using the CuO NPs such as nanosorbent dose, contact time, pH, and initial metal concentration. The maximum uptake capacity (qm) of both CuO NPs-1 and CuO NPs-2 followed the order of Pb(II) > Ni(II) > Cd(II). The optimum qm of CuO NPs were 88.80, 54.90, and 15.60 mg g−1 for Pb(II), Ni(II), and Cd(II), respectively and occurred at sorbent dose of 0.33 g L−1 and pH of 6. Furthermore, isotherm and kinetic models were applied to fit the experimental data. Freundlich models (R2 > 0.97) and pseudo-second-order model (R2 > 0.96) were fitted well to the experimental data and the equilibrium of metal adsorption occurred within 60 min.


Processes ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 78
Author(s):  
Karla Araya-Castro ◽  
Tzu-Chiao Chao ◽  
Benjamín Durán-Vinet ◽  
Carla Cisternas ◽  
Gustavo Ciudad ◽  
...  

Amongst different living organisms studied as potential candidates for the green synthesis of copper nanoparticles, algal biomass is presented as a novel and easy-to-handle method. However, the role of specific biomolecules and their contribution as reductant and capping agents has not yet been described. This contribution reports a green synthesis method to obtain copper oxide nanoparticles (CuO-NPs) using separated protein fractions from an aqueous extract of brown algae Macrocystis pyrifera through size exclusion chromatography (HPLC-SEC). Proteins were detected by a UV/VIS diode array, time-based fraction collection was carried out, and each collected fraction was used to evaluate the synthesis of CuO-NPs. The characterization of CuO-NPs was evaluated by Dynamic Light Scattering (DLS), Z-potential, Fourier Transform Infrared (FTIR), Transmission Electron Microscope (TEM) equipped with Energy Dispersive X-ray Spectroscopy (EDS) detector. Low Molecular Weight (LMW) and High Molecular Weight (HMW) protein fractions were able to synthesize spherical CuO-NPs. TEM images showed that the metallic core present in the observed samples ranged from 2 to 50 nm in diameter, with spherical nanostructures present in all containing protein samples. FTIR measurements showed functional groups from proteins having a pivotal role in the reduction and stabilization of the nanoparticles. The highly negative zeta potential average values from obtained nanoparticles suggest high stability, expanding the range of possible applications. This facile and novel protein-assisted method for the green synthesis of CuO-NPs may also provide a suitable tool to synthesize other nanoparticles that have different application areas.


Sign in / Sign up

Export Citation Format

Share Document